اثر نانو ذرات طلای سنتز شده توسط میکرو جلبک اسپیرولینا پلاتنسیس بر شاخص‌های استرس اکسیداتیو در موش های سفید بزرگ آزمایشگاهی تغذیه‌شده با غذای پرچرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست دریا، دانشکده علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 گروه بیومتریال، نانوتکنولوژی و مهندسی بافت، دانشکده فناوری‌های نوین علوم پزشکی، دانشگاه علوم پزشکی اصفهان، ایران

3 گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی اصفهان، ایران

چکیده

مقدمه و هدف: با توجه به اهمیت نانو ذرات طلا و میکروجلبک اسپیرولینا در داروسازی، بررسی تأثیر آن‌ها در حیطه‌های مختلف زیست پزشکی بسیار ضروری می‌نماید. این تحقیق با هدف بررسی اثر  نانو ذرات طلای سنتز شده توسط میکرو جلبک اسپیرولینا پلاتنسیس بر شاخص‌های استرس اکسیداتیو در موش های سفید بزرگ آزمایشگاهی تغذیه‌شده با غذای پرچرب، صورت گرفته است.
مواد و روش ها: به وسیله عصاره آبی اسپیرولینا پلاتنسیس، بیوسنتز نانو ذرات طلا صورت پذیرفت. در ادامه آزمایش، 30 موش های سفید بزرگ آزمایشگاهی  به پنج گروه تقسیم گردید که شامل گروه کنترل که با غذای پلت استاندارد تغذیه شدند، گروه مدل که با رژیم غذایی پرچرب و بدون هیچ‌گونه درمانی تغذیه شدند و سه گروه آزمایشی دیگر که همراه با رژیم غذایی پرچرب از نانو ذرات بیوسنتز شده در دو دوز بالا و پایین و گروهی که فقط با میکرو جلبک اسپیرولینا تغذیه ‌شدند.
نتایج: طبق نتایج، در طول‌موج 540 نانومتر و در دمای 40 درجه سانتی‌گراد، سنتز بهینه به ثبت رسید و شکل نانو ذرات کروی بوده است. این مطالعه افزایش قابل‌توجهی را در میزان SOD، GPx، و CAT در گروه‌های HFD+The Au-Sp (دوز بالا) و HFD+Spirulina در مقایسه با گروه مدل نشان داد. میزان مالون دی آلدهید در هر دو گروه HFD+The Au-Sp (دوز بالا) و HFD+Spirulina در مقایسه با گروه مدل به‌طور قابل‌توجهی کاهش یافت.
نتیجه‌گیری: نتایج بیانگر این است که عصاره اسپیرولینا پلاتنسیس، منبع زیستی مناسبی برای سنتز نانو ذرات طلا است و این محصول را برای مصارف پزشکی در موقعیت ایده آل قرار می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of gold nanoparticles synthesized by microalgae Spirulina platensis on oxidative stress indices in rats fed with high fat diet

نویسندگان [English]

  • Hamed Abdollah Aslian 1
  • Mohammadreza Taherizadeh 1
  • Mohammad Rafienia 2
  • Parham Raeisi 3
  • Elham Bidram 2
1 Department of Marine Biology, Faculty of Marine Science and Technology, Hormozgan University, Bandar Abbas, Iran
2 Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3 Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
چکیده [English]

Background and Objective: Given the significance of gold nanoparticles and spirulina microalgae in pharmaceuticals, it is essential to explore their impact in diverse areas of biomedicine. This research aimed to investigate the effect of gold nanoparticles synthesized by the microalgae Spirulina platensis on oxidative stress indices in large Albino laboratory rats fed a high-fat diet.
Materials and Methods: Gold nanoparticles were synthesized using the aqueous extract of Spirulina platensis. In the continuation of the experiment, 30 large white laboratory rats were divided into five groups. These included the control group, which was fed standard pellet food, the model group, which was fed a high-fat diet without any treatment, and three other experimental groups. These experimental groups were fed high-fat food containing biosynthesized nanoparticles in two different doses, as well as a group that was fed only with spirulina microalgae.
Results: According to the results, the optimal synthesis occurred at a wavelength of 540 nm and a temperature of 40°C. Additionally, the nanoparticles displayed a spherical shape. This study showed a significant increase in SOD, GPx, and CAT levels in the HFD+Au-Sp (high dose) and HFD+Spirulina groups compared to the model group. In addition, the levels of malondialdehyde were significantly reduced in both the HFD+The Au-Sp (high dose) and HFD+Spirulina groups compared to the model group.
Conclusion: The results indicate that the extract of Spirulina platensis is a suitable biological source for synthesizing gold nanoparticles, making it an ideal material for medical applications.

کلیدواژه‌ها [English]

  • Gold Nanoparticles
  • Microalgae
  • Biosynthesis
  • Oxidative Enzymes
  • Catalase
  1. Bednarski M, Dudek M, Knutelska J, Nowiński L, Sapa J, Zygmunt M, et al. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: in vivo studies. Pharmacological Reports 2015;67(3):405-409.
  2. Dananjaya SH, Thao NT, Wijerathna HM, Lee J, Edussuriya M, Choi D, et al. In vitro and in vivo anticandidal efficacy of green synthesized gold nanoparticles using Spirulina maxima polysaccharide. Process Biochemistry 2020;92:138-148.
  3. Nandi BK, Patel S. Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation. Arabian Journal of Chemistry 2017;10:S2961-8.
  4. Tonelli FM, Silva CS, Delgado VM, Tonelli FC. Algae-based green AgNPs, AuNPs, and FeNPs as potential nanoremediators. Green Processing and Synthesis 2023;12(1):20230008.
  5. Nygaard CC, Schreiner L, Morsch TP, Saadi RP, Figueiredo MF, Padoin AV. Urinary incontinence and quality of life in female patients with obesity. Revista Brasileira de Ginecologia e Obstetrícia 2018;40:534-539.
  6. Lee SO, Simons AL, Murphy PA, Hendrich S. Soyasaponins lowered plasma cholesterol and increased fecal bile acids in female golden Syrian hamsters. Experimental Biology and Medicine 2005;230(7):472-478.
  7. Hussein MM, Samy M, Arisha AH, Saadeldin IM, Alshammari GM. Anti-obesity effects of individual or combination treatment with Spirulina platensis and green coffee bean aqueous extracts in high-fat diet-induced obese rats. All Life 2020;13(1):328-338.
  8. Sánchez-Rodríguez MA, Mendoza-Núñez VM. Oxidative stress indexes for diagnosis of health or disease in humans. Oxidative Medicine and Cellular Longevity 2019; 4128152.
  9. Soltani Nejad M, Samandari Najafabadi N, Aghighi S, Pakina E, Zargar M. Evaluation of Phoma sp. biomass as an endophytic fungus for synthesis of extracellular gold nanoparticles with antibacterial and antifungal properties. Molecules 2022;27(4):1181.
  10. Amina SJ, Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. International Journal of Nanomedicine 2020; 9823-9857.
  11. Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Advances 2020;2(9):3764-3787.
  12. Doshi H, Ray A, Kothari IL. Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnology and Bioengineering 2007;96(6):1051-1063.
  13. Kalabegishvili T, Kirkesali E, Rcheulishvili A. Synthesis of gold nanoparticles by blue-green algae Spirulina platensis. Frank Laboratory of Neutron Physics 2012.
  14. Chisolm GM, Steinberg D. The oxidative modification hypothesis of atherogenesis: an overview. Free Radical Biology and Medicine 2000;28(12):1815-1826.
  15. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 2007;39(1):44-84.
  16. Minhajuddin M, Beg ZH, Iqbal J. Hypolipidemic and antioxidant properties of tocotrienol rich fraction isolated from rice bran oil in experimentally induced hyperlipidemic rats. Food and Chemical Toxicology 2005;43(5):747-753.
  17. Doman KM, Gharieb MM, Abd El-Monem AM, Morsi HH. Synthesis of silver and copper nanoparticle using Spirulina platensis and evaluation of their anticancer activity. International Journal of Environmental Health Research 2023 ;7:1-3.
  18. Aljohani FS, Hamed MT, Bakr BA, Shahin YH, Abu-Serie MM, Awaad AK, et al. In vivo bio-distribution and acute toxicity evaluation of greenly synthesized ultra-small gold nanoparticles with different biological activities. Scientific Reports 2022;12(1):6269.
  19. Shankar PD, Shobana S, Karuppusamy I, Pugazhendhi A, Ramkumar VS, Arvindnarayan S, et al. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology 2016;95:28-44.
  20. Sathiyaraj S, Suriyakala G, Gandhi AD, Babujanarthanam R, Almaary KS, Chen TW, et al. Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. Journal of Infection and Public Health 2021;14(12):1842-1847.
  21. Rabeea MA, Owaid MN, Aziz AA, Jameel MS, Dheyab MA. Mycosynthesis of gold nanoparticles using the extract of Flammulina velutipes, Physalacriaceae, and their efficacy for decolorization of methylene blue. Journal of Environmental Chemical Engineering 2020;8(3):103841.
  22. Kabiri F, Aghaei SS, Pourbabaee AA, Soleimani M, Komeili Movahhed T. Antibiofilm and cytotoxic potential of extracellular biosynthesized gold nanoparticles using actinobacteria Amycolatopsis sp. KMN. Preparative Biochemistry & Biotechnology 2023;53(3):265-278.
  23. Diksha D, Gupta SK, Gupta P, Banerjee UC, Kalita D, Gupta S. Antibacterial potential of gold nanoparticles synthesized from leaf extract of syzygium cumini against multidrug-resistant urinary tract pathogens. Cureus 2023;15(2) :e34830.
  24. Roy A, Pandit C, Gacem A, Alqahtani MS, Bilal M, Islam S, et al. Biologically derived gold nanoparticles and their applications. Bioinorganic Chemistry and Applications 2022. https://doi.org/10.1155/2022/8184217.
  25. Sant DG, Gujarathi TR, Harne SR, Ghosh S, Kitture R, Kale S, et al. Frond assisted rapid green synthesis of gold and silver nanoparticles. Journal of Nanoparticles 2013. https://doi.org/10.1155/2013/182320.
  26. Vickers NJ. Animal communication: when i’m calling you, will you answer too. Current Biology 2017;27(14):R713-5.
  27. Patra JK, Baek KH. Green nanobiotechnology: factors affecting synthesis and characterization techniques. Journal of Nanomaterials 2014:219. https://doi.org/10.1155/2014/417305.
  28. Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, Jose-Yacaman M. Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. Journal of Nanoparticle Research 1999;1:397-404.
  29. Song YS, Muthuraman G, Chen YZ, Lin CC, Zen JM. Screen Printed Carbon Electrode Modified with Poly (l‐Lactide) Stabilized Gold Nanoparticles for Sensitive As (III) Detection. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2006;18(18):1763-1770.
  30. Ogale SB, Ahmad A, Pasricha R, Dhas VV, Syed A. Physical manipulation of biological and chemical syntheses for nanoparticle shape and size control. Applied Physics Letters 2006; 89(26):263105-263105-3.
  31. Jayshree A, Nallamuthu T. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Applied Nanoscience 2015;5:603-607.
  32. MubarakAli D, Arunkumar J, Nag KH, SheikSyedIshack KA, Baldev E, Pandiaraj D, Thajuddin N. Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms—Comparative studies on synthesis and its application on biolabelling. Colloids and Surfaces B: Biointerfaces 2013;103:166-173.
  33. Deepak P, Amutha V, Kamaraj C, Balasubramani G, Aiswarya D, Perumal P. Chemical and green synthesis of nanoparticles and their efficacy on cancer cells. In book: Green synthesis, characterization and applications of nanoparticles 2019; 369-387. Elsevier.
  34. Jakhu S, Sharma Y, Sharma K, Vaid K, Dhar H, Kumar V, et al. Production and characterization of microalgal exopolysaccharide as a reducing and stabilizing agent for green synthesis of gold-nanoparticle: a case study with a Chlorella sp. from Himalayan high-altitude psychrophilic habitat. Journal of Applied Phycology 2021;33(6):3899-914.
  35. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 2018;54(4):287-93.
  36. Younis NS, Mohamed ME, El Semary NA. Green synthesis of silver nanoparticles by the cyanobacteria synechocystis sp.: characterization, antimicrobial and diabetic wound-healing actions. Marine Drugs 2022;20(1):56.
  37. Selim ME, Abd-Elhakim YM, Al-Ayadhi LY. Pancreatic response to gold nanoparticles includes decrease of oxidative stress and inflammation in autistic diabetic model. Cellular Physiology and Biochemistry 2015;35(2):586-600.
  38. Witzmann FA, Monteiro-Riviere NA. Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. InNanomedicine in Cancer 2017; 461-485. Jenny Stanford Publishing.
  39. Kassam A, Bremner G, Clark B, Ulibarri G, Lennox RB. Place exchange reactions of alkyl thiols on gold nanoparticles. Journal of the American Chemical Society 2006;128(11):3476-3477.
  40. Safithri M, Tarman K, Setyaningsih I, Fajarwati Y, Dittama IY. In Vitro and In Vivo Malondialdehyde Inhibition Activities of Stichopus hermanii and Spirulina platensis. HAYATI Journal of Biosciences 2022;29(6):771-781.
  41. Zheng J, Inoguchi T, Sasaki S, Maeda Y, McCarty MF, Fujii M, et al. Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2013;304(2):R110-120.
  42. Kartal F, Çimen D, Bereli N, Denizli A. Molecularly imprinted polymer based quartz crystal microbalance sensor for the clinical detection of insulin. Materials Science and Engineering: C 2019;97:730-737.
  43. Hernandez FY, Khandual S, López IG. Cytotoxic effect of Spirulina platensis extracts on human acute leukemia Kasumi-1 and chronic myelogenous leukemia K-562 cell lines. Asian Pacific Journal of Tropical Biomedicine 2017;7(1):14-19.
  44. Gargouri M, Saad HB, Amara IB, Magn C, El Feki A. Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats. Cellular and Molecular Biology 2016;62(10):85-93.
  45. Gad AS, Khadrawy YA, El-Nekeety AA, Mohamed SR, Hassan NS, Abdel-Wahhab MA. Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition 2011;27(5):582-589.
  46. Safithri M, Tarman K, Setyaningsih I, Fajarwati Y, Dittama IY. In Vitro and In Vivo Malondialdehyde Inhibition Activities of Stichopus hermanii and Spirulina platensis. HAYATI Journal of Biosciences 2022;29(6):771-781.
  47. Vignaud J, Loiseau C, Hérault J, Mayer C, Côme M, Martin I, et al. Microalgae Produce Antioxidant Molecules with Potential Preventive Effects on Mitochondrial Functions and Skeletal Muscular Oxidative Stress. Antioxidants 2023;12(5):1050.
  48. Andrade LM, Andrade CJ, Dias M, Nascimento C, Mendes MA. Chlorella and spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements 2018;6(1):45-58.
  49. Hendi AA, Awad MA, Virk P, Ortashi K, Hakami F. Potential of gold nanoparticles as antioxidants in diabetic mice. Journal of Computational and Theoretical Nanoscience 2018;15(4):1307-1311.
  50. Mehanna ET, Kamel BS, Abo-Elmatty DM, Elnabtity SM, Mahmoud MB, Abdelhafeez MM, et al. Effect of gold nanoparticles shape and dose on immunological, hematological, inflammatory, and antioxidants parameters in male rabbit. Veterinary World 2022;15(1):65.
  51. Ponnanikajamideen M, Rajeshkumar S, Annadurai G. In vivo antidiabetic and in vitro antioxidant and antimicrobial activity of aqueous leaves extract of Chamaecostus cuspidatus. Research Journal of Pharmacy and Technology 2016;9(8):1204-1210.
  52. Fadia BS, Mokhtari-Soulimane N, Meriem B, Wacila N, Zouleykha B, Karima R, et al. Histological injury to rat brain, liver, and kidneys by gold nanoparticles is dose-dependent. ACS Omega 2022;7(24):20656-65.
  53. Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, de Abreu Brandolfi J, et al. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer's type. Materials Science and Engineering: C 2017;77:476-483.
  54. Ou Y, Lin L, Pan Q, Yang X, Cheng X. Preventive effect of phycocyanin from Spirulina platensis on alloxan-injured mice. Environmental Toxicology and Pharmacology 2012;34(3):721-726.
  55. Kaphle A, Navya PN, Umapathi A, Daima HK. Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environmental Chemistry Letters 2018;16:43-58.
  56. Chauhan A, Anand J, Parkash V, Rai N. Biogenic synthesis: A sustainable approach for nanoparticles synthesis mediated by fungi. Inorganic and Nano-Metal Chemistry 2023;53(5):460-473.