تاثیر هشت هفته تمرین مقاومتی به همراه مکمل اسپیرولینا بر تغییرات مسیر بیان ژن TNF-ɑ/ IKKβ/ TSC1/Rheb در بافت کلیه موش های سفید بزرگ نر

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

مقدمه و هدف: مسیر سیگنالی mTOR و ژن‌های وابسته به آن در اثر تمرینات مقاومتی فعال شده و موجب هایپرتروفی عضلانی می‌شود. مکمل اسپیرولینا نیز سنتز پروتئین را افزایش می‌دهد. این مطالعه به بررسی اثر هشت هفته تمرین مقاومتی و مکمل اسپیرولینا بر تغییرات مسیر بیان ژن TNF-ɑ/IKKβ/TSC1/Rheb در کلیه موش‌های نر پرداخته است..
مواد و روش ها: 32 موش صحرایی نر به‌طور تصادفی به چهار گروه کنترل، مکمل، تمرین و ترکیبی تقسیم شدند. تمرین مقاومتی طی ۸ هفته و سه ست پنج‌تکراری، یک روز در میان انجام شد. مکمل اسپیرولینا به میزان ۲۰۰ میلی‌گرم به ازای کیلوگرم وزن بدن روزانه مصرف شد. بیان ژن‌ها با روش Real-Time PCR ارزیابی و داده‌ها با آزمون تحلیل واریانس دوطرفه تحلیل شدند.
نتایج: در مقایسه با گروه کنترل، بیان ژن TNF-ɑ در گروه تمرین مقاومتی به طور معناداری بیشتر (05/0>p)، در گروه اسپیرولینا به طور معناداری کمتر (05/0>p)، و در گروه ترکیبی بدون تغییر بود (05/0<p). همچنین تمرین و ترکیب تمرین و مکمل منجر به افزایش معنادار بیان ژن IKKβ شد (05/0>p). در مقایسه با گروه کنترل، در هر سه گروه، بیان ژن TSC1 افزایش معنادار (05/0>p) و بیان ژن Rheb افزایش جزئی غیرمعناداری داشت (05/0<p).
نتیجه‌گیری: براساس نتایج تحقیق حاضر مصرف مکمل اسپیرولینا به تنهایی اثری بر مسیر سیگنالی هایپرتروفی کلیه نداشت. با این وجود تمرین مقاومتی به همراه مکمل توانست بر مسیر سیگنالی هایپرتروفی کلیوی اثرگذار باشد. تمرین مقاومتی به تنهایی توانست اثر مثبتی بر مسیر سیگنالی TNF-ɑ/IKKβ/TSC1/Rheb در هایپرتروفی کلیه بر جای بگذارد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of eight weeks of resistance training combined with spirulina supplementation on the TNF-ɑ/IKKβ/TSC1/Rheb gene expression in male rat kidney tissue

نویسندگان [English]

  • Hamid Reza Sadeghipour
  • Bardia Zakeri Dehvasati
  • Abdosaleh Zar
  • Mohammad Mehdi Khaleghi
Sport Science Department, Human Faculty, Persian Gulf University, Bushehr, Iran
چکیده [English]

Background and Objective: The mTOR signaling pathway and its associated genes are activated by resistance training, leading to muscle hypertrophy. Spirulina supplementation also enhances protein synthesis. This study aimed to investigate the effects of eight weeks of resistance training and spirulina supplementation on changes in the TNF-ɑ/IKKβ/TSC1/Rheb gene expression pathway in the kidneys of male rats.
Materials and Methods: Thirty-two male rats were randomly assigned to four groups: control, supplementation, training, and combined (training + supplementation). The resistance training protocol consisted of eight weeks of exercises performed every other day, with three sets of five repetitions per session. Spirulina supplementation was administered daily at a dose of 200 mg per kg of body weight. Gene expression levels were evaluated using the Real-Time PCR method, and data were analyzed using two-way ANOVA.
Results: Compared to the control group, TNF-ɑ gene expression significantly increased in the resistance training group (p < 0.05), decreased in the spirulina group (p < 0.05), and remained unchanged in the combination group (p > 0.05). Resistance training and the combined intervention significantly increased IKKβ gene expression (p < 0.05). Compared to the control group, all three experimental groups showed a significant increase in TSC1 gene expression (p < 0.05), while the increase in Rheb gene expression was slight and not statistically significant (p > 0.05).
Conclusion: The findings of this study indicate that spirulina supplementation alone had no significant effect on the hypertrophic signaling pathway in the kidney. However, resistance training combined with spirulina supplementation influenced the renal hypertrophic signaling pathway. Resistance training alone positively impacted the TNF-ɑ/IKKβ/TSC1/Rheb pathway in kidney hypertrophy.

کلیدواژه‌ها [English]

  • Resistance training
  • Spirulina
  • Kidney
  • Tumor Necrosis Factor-Alpha
  • IKKβ
  1. Taner T, Iqbal CW, Textor SC, Stegall MD, Ishitani MB. Compensatory hypertrophy of the remaining kidney in medically complex living kidney donors over the long term. Transplantation. 2015;99(3):555-9.
  2. Rojas-Canales DM, Li JY, Makuei L, Gleadle JM. Compensatory renal hypertrophy following nephrectomy: When and how? Nephrology (Carlton). 2019;24(12):1225-32.
  3. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. The lancet. 2017;389(10075):1238-52.
  4. Fahal I, Bell G, Bone J, Edwards R. Physiological abnormalities of skeletal muscle in dialysis patients. Nephrology, Dialysis, Transplantation: Official Publication Of The European Dialysis And Transplant Association-European Renal Association. 1997;12(1):119-27.
  5. Henske EP, Jóźwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nature Reviews Disease Primers. 2016;2:16035.
  6. Lam HC, Siroky BJ, Henske EP. Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nature Reviews Nephrology. 2018;14(11):704-16.
  7. Traykova-Brauch M, Schönig K, Greiner O, Miloud T, Jauch A, Bode M, et al. An efficient and versatile system for acute and chronic modulation of renal tubular function in transgenic mice. Nature Medicine. 2008;14(9):979-84.
  8. Zhou J, Brugarolas J, Parada LF. Loss of Tsc1, but not Pten, in renal tubular cells causes polycystic kidney disease by activating mTORC1. Human molecular genetics. 2009;18(22):4428-41.
  9. Wu H, Chen J, Xu J, Dong Z, Meyuhas O, Chen J-K. Blocking rpS6 phosphorylation exacerbates Tsc1 deletion–induced kidney growth. Journal of the American Society of Nephrology. 2016;27(4):1145-58.
  10. Wataya-Kaneda M, Uemura M, Fujita K, Hirata H, Osuga K, Kagitani-Shimono K, Nonomura N. Tuberous sclerosis complex: Recent advances in manifestations and therapy. International Journal of Urology. 2017;24(9):681-91.
  11. Rosset C, Netto CBO, Ashton-Prolla P. TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review. Genet Mol Biol. 2017;40(1):69-79
  12. Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Molecular cell. 2012;47(4):535-46.
  13. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805-8.
  14. Consortium ECTS. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell. 1993;75(7):1305-15.
  15. Fang Y, Li F, Qi C, Mao X, Wang F, Zhao Z, et al. Metformin effectively treats Tsc1 deletion-caused kidney pathology by upregulating AMPK phosphorylation. Cell Death Discovery. 2020;6(1):52.
  16. Jiang L, Xu L, Mao J, Li J, Fang L, Zhou Y, et al. Rheb/mTORC1 signaling promotes kidney fibroblast activation and fibrosis. Journal of the American Society of Nephrology. 2013;24(7):1114-26.
  17. Gui Y, Lu Q, Gu M, Wang M, Liang Y, Zhu X, et al. Fibroblast mTOR/PPARγ/HGF axis protects against tubular cell death and acute kidney injury. Cell Death Differ. 2019;26(12):2774-89.
  18. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature reviews immunology. 2008;8(12):958-69.
  19. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nature reviews immunology. 2011;11(11):723-37.
  20. Zhu L, Yang T, Li L, Sun L, Hou Y, Hu X, et al. TSC1 controls macrophage polarization to prevent inflammatory disease. Nature communications. 2014;5(1):4696.
  21. Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene. 2006;25(51):6680-4.
  22. Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harbor perspectives in biology. 2009;1(4):a000034.
  23. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2016;8(3):227-41.
  24. Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science. 2002;298(5596):1214-5.
  25. Dibble CC, Cantley LC. Regulation of mTORC1 by PI3K signaling. Trends in cell biology. 2015;25(9):545-55.
  26. Saito K, Araki Y, Kontani K, Nishina H, Katada T. Novel role of the small GTPase Rheb: its implication in endocytic pathway independent of the activation of mammalian target of rapamycin. The Journal of Biochemistry. 2005;137(3):423-30.
  27. Reuther GW, Der CJ. The Ras branch of small GTPases: Ras family members don't fall far from the tree. Current opinion in cell biology. 2000;12(2):157-65.
  28. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;168(6):960-76.
  29. Groenewoud MJ, Zwartkruis FJ. Rheb and mammalian target of rapamycin in mitochondrial homoeostasis. Open biology. 2013;3(12):130185.
  30. Yang S, Xia C, Li S, Du L, Zhang L, Zhou R. Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity. Redox biology. 2014;3:63-71.
  31. Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell metabolism. 2013;17(5):719-30.
  32. Heard JJ, Fong V, Bathaie SZ, Tamanoi F. Recent progress in the study of the Rheb family GTPases. Cellular signalling. 2014;26(9):1950-7.
  33. Goorden SM, Hoogeveen-Westerveld M, Cheng C, van Woerden GM, Mozaffari M, Post L, et al. Rheb is essential for murine development. Molecular and cellular biology. 2011;31(8):1672-8.
  34. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science. 2011;332(6032):966-70.
  35. Yuan H-X, Xiong Y, Guan K-L. Nutrient sensing, metabolism, and cell growth control. Molecular cell. 2013;49(3):379-87.
  36. Rabanal-Ruiz Y, Otten EG, Korolchuk VI. mTORC1 as the main gateway to autophagy. Essays in biochemistry. 2017;61(6):565-84.
  37. Sun S-C. The non-canonical NF-κB pathway in immunity and inflammation. Nature reviews immunology. 2017;17(9):545-58.
  38. Gerondakis S, Fulford TS, Messina NL, Grumont RJ. NF-κB control of T cell development. Nature immunology. 2014;15(1):15-25.
  39. Lindsay SA, Wasserman SA. Conventional and non-conventional Drosophila Toll signaling. Developmental & Comparative Immunology. 2014;42(1):16-24.
  40. Bishop NC, Burton JO, Graham-Brown MPM, Stensel DJ, Viana JL, Watson EL. Exercise and chronic kidney disease: potential mechanisms underlying the physiological benefits. Nature Reviews Nephrology. 2023;19(4):244-56.
  41. Chen C-C, Huang Y-Y, Hua Z, Xia L, Li X-Q, Long Y-Q, et al. Impact of resistance exercise on patients with chronic kidney disease. BMC Nephrology. 2024;25(1):115.
  42. Molaei K, Shanjani SM, Gorzi A, Kazemzadeh Y, Banaeifar A. The Effect of Eight Weeks of Resistance Training and Testosterone Enanthate Consumption on TNF-α and IL-6 Genes’ Expression in the Kidney Tissue of Female Wistar Rats. Zahedan Journal of Research in Medical Sciences. 2023;25(3).
  43. Baião VM, Cunha VA, Duarte MP, Andrade FP, Ferreira AP, Nóbrega OT, et al. Effects of Exercise on Inflammatory Markers in Individuals with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Metabolites. 2023;13(7):795.
  44. Kalafati M, Jamurtas AZ, Nikolaidis MG, Paschalis V, Theodorou AA, Sakellariou GK, et al. Ergogenic and antioxidant effects of spirulina supplementation in humans. Medicine & Science in Sports & Exercise. 2010;42(1):142-51.
  45. Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of toxicology. 2016;90(8):1817-40.
  46. Hoseini SM, Khosravi-Darani K, Mozafari MR. Nutritional and medical applications of spirulina microalgae. Mini reviews in medicinal chemistry. 2013;13(8):1231-7.
  47. Phang S-M, Chu W-L. University of Malaya algae culture collection (UMACC): Catalogue of strains: Institute of Postgraduate Studies & Research University of Malaya; 1999.
  48. Mathur M. Bioactive molecules of: a food supplement. Bioactive molecules in food: Springer; 2019. p. 1621-42.
  49. Soheili M, Khosravi-Darani K. The potential health benefits of algae and micro algae in medicine: a review on Spirulina platensis. Current Nutrition & Food Science. 2011;7(4):279-85.
  50. Mysliwa-Kurdziel B, Solymosi K. Phycobilins and Phycobiliproteins Used in Food Industry and Medicine. Mini reviews in medicinal chemistry. 2017;17(13):1173-93.
  51. Rodríguez-Sánchez R, Ortiz-Butrón R, Blas-Valdivia V, Hernández-García A, Cano-Europa E. Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl(2)-caused oxidative stress and renal damage. Food chemistry. 2012;135(4):2359-65.
  52. Rojas-Franco P, Franco-Colín M, Camargo MEM, Carmona MME, Ortíz-Butrón MdRE, Blas-Valdivia V, Cano-Europa E. Phycobiliproteins and phycocyanin of Arthrospira maxima (Spirulina) reduce apoptosis promoters and glomerular dysfunction in mercury-related acute kidney injury. Toxicology Research and Application. 2018;2:2397847318805070.
  53. Eidizadeh H, Avandi SM, Zar A, Sadeghipour HR. The effect of eight weeks of resistance training with spirulina platensis supplementation on the RAGs/Rheb/mTORC/S6K pathway in male rat kidneys. Jorjani-Biomedicine-Journal. 2024;12(1):23-7.
  54. Sadeghipour HR, Raeisi F, Zar A. The effect of eight weeks of resistance training and Spirulina platensis supplementation on the signaling pathway of Wnt-GSK3β-TSC2-S6K in the kidney tissue of male rats. Journal of Applied Health Studies in Sport Physiology. 2024;11(1):223-36.
  55. Zar A, Ahmadi F. Evaluation of CITED4 Gene Expression in The Cardiac Muscle of Male Rats as a Result of Resistance Exercise and Spirulina Supplement. Jorjani Biomedicine Journal. 2021;9(2):36-44.
  56. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. Journal of applied physiology. 2005;98(4):1154-62.
  57. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nature reviews immunology. 2011;11(9):607-15.
  58. Febbraio MA, Pedersen BK. Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exercise and sport sciences reviews. 2005;33(3):114-9.
  59. Ngu E-L, Tan C-Y, Lai NJ-Y, Wong K-H, Lim S-H, Ming LC, et al. Spirulina platensis suppressed iNOS and proinflammatory cytokines in lipopolysaccharide-induced BV2 microglia. Metabolites. 2022;12(11):1147.
  60. Romay C, Gonzalez R, Ledon N, Remirez D, Rimbau V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current protein and peptide science. 2003;4(3):207-16.
  61. Hendrijantini N, Sitalaksmi RM, Ari MDA, Hidayat TJ, Putri PAN, Sukandar D. The expression of TNF-α, IL-1β, and IL-10 in the diabetes mellitus condition induced by the combination of spirulina and chitosan. Bali Medical Journal. 2020;9(1):22-6.
  62. Bai S-K, Lee S-J, Na H-J, Ha K-S, Han J-A, Lee H, et al. β-Carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-κB activation. Experimental & molecular medicine. 2005;37(4):323-34.
  63. Mohiti S, Zarezadeh M, Naeini F, Tutunchi H, Ostadrahimi A, Ghoreishi Z, Ebrahimi Mamaghani M. Spirulina supplementation and oxidative stress and pro‐inflammatory biomarkers: A systematic review and meta‐analysis of controlled clinical trials. Clinical and Experimental Pharmacology and Physiology. 2021;48(8):1059-69.
  64. Finamore A, Palmery M, Bensehaila S, Peluso I. Antioxidant, immunomodulating, and microbial‐modulating activities of the sustainable and ecofriendly spirulina. Oxidative medicine and cellular longevity. 2017;2017(1):3247528.
  65. De Rivera CG, Miranda-Zamora R, Diaz-Zagoya J, Juárez-Oropeza M. Preventive effect of Spirulina maxima on the fatty liver induced by a fructose-rich diet in the rat, a preliminary report. Life sciences. 1993;53(1):57-61.
  66. Selmi C, Leung PS, Fischer L, German B, Yang C-Y, Kenny TP, et al. The effects of Spirulina on anemia and immune function in senior citizens. Cellular & molecular immunology. 2011;8(3):248-54.
  67. Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132(3):344-62.
  68. Forti LN, Van Roie E, Njemini R, Coudyzer W, Beyer I, Delecluse C, Bautmans I. Effects of resistance training at different loads on inflammatory markers in young adults. European journal of applied physiology. 2017;117:511-9.
  69. Townsend JR, Stout JR, Jajtner AR, Church DD, Beyer KS, Oliveira LP, et al. Resistance exercise increases intramuscular NF-κb signaling in untrained males. European journal of applied physiology. 2016;116:2103-11.
  70. Pearson JR, Moodie N, Stout KW, Hawkins WC, Matuszek M, Graham ZA, et al. Similar Responses in the Akt/Protein Kinase B Signaling Pathway Following Different Lower-Body Exercise Volumes in Recreationally Active Men. The Journal of Strength & Conditioning Research. 2023;37(5):1034-41.
  71. Møller AB, Vendelbo MH, Rahbek SK, Clasen BF, Schjerling P, Vissing K, Jessen N. Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals. Pflügers Archiv-European Journal of Physiology. 2013;465:1785-95.
  72. Pa B. Function and activation of NF-kappa B in the immune system. Annual review of immunology. 1994;12:141-79.
  73. Natarajan A, Van Anthony MV, Jose PA. Renal Modulation: The Renin-Angiotensin System. Nephrology and Fluid/electrolyte Physiology: Elsevier; 2019. p. 165-88.
  74. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, et al. Rapamycin administration in humans blocks the contraction‐induced increase in skeletal muscle protein synthesis. The Journal of physiology. 2009;587(7):1535-46.
  75. Souza Ed, Tricoli V, Bueno C, Pereira MG, Brum PC, Oliveira EMd, et al. The acute effects of strength, endurance and concurrent exercises on the Akt/mTOR/p70S6K1 and AMPK signaling pathway responses in rat skeletal muscle. Brazilian Journal of Medical and Biological Research. 2013;46(4):343-7.
  76. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274-93.
  77. Inoki K, Li Y, Xu T, Guan K-L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes & development. 2003;17(15):1829-34.
  78. Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochemical Society Transactions. 2009;37(1):217-22.
  79. Hardie DG. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes & development. 2011;25(18):1895-908.
  80. Wu R, Dang F, Li P, Wang P, Xu Q, Liu Z, et al. The circadian protein Period2 suppresses mTORC1 activity via recruiting Tsc1 to mTORC1 complex. Cell metabolism. 2019;29(3):653-67. e6.
  81. Haraguchi FK, de Brito Magalhães CL, Neves LX, dos Santos RC, Pedrosa ML, Silva ME. Whey protein modifies gene expression related to protein metabolism affecting muscle weight in resistance-exercised rats. Nutrition. 2014;30(7-8):876-81.
  82. Kakigi R, Yoshihara T, Ozaki H, Ogura Y, Ichinoseki-Sekine N, Kobayashi H, Naito H. Whey protein intake after resistance exercise activates mTOR signaling in a dose-dependent manner in human skeletal muscle. European journal of applied physiology. 2014;114:735-42.
  83. Dreyer HC, Drummond MJ, Glynn EL, Fujita S, Chinkes DL, Volpi E, Rasmussen BB. Resistance exercise increases human skeletal muscle AS160/TBC1D4 phosphorylation in association with enhanced leg glucose uptake during postexercise recovery. Journal of applied physiology. 2008;105(6):1967-74.
  84. Gao Y, Tian T. mTOR signaling pathway and gut microbiota in various disorders: Mechanisms and potential drugs in pharmacotherapy. International Journal of Molecular Sciences. 2023;24(14):11811.
  85. Inoki K, Corradetti MN, Guan K-L. Dysregulation of the TSC-mTOR pathway in human disease. Nature genetics. 2005;37(1):19-24.
  86. Fingar DC, Blenis J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene. 2004;23(18):3151-71.
  87. Carrizzo A, Conte GM, Sommella E, Damato A, Ambrosio M, Sala M, et al. Novel potent decameric peptide of Spirulina platensis reduces blood pressure levels through a PI3K/AKT/eNOS-dependent mechanism. Hypertension. 2019;73(2):449-57.