اثر تمرین هوازی و پیش شرطی سازی ایسکمی دور بر بیان ژن بکلین-1 بافت قلب موشهای بزرگ آزمایشگاهی دیابتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشکده انسانی، واحد ساری، دانشگاه آزاد اسلامی، ساری، ایران

2 گروه قلب، مرکز تحقیقات قلب و عروق، دانشگاه علوم پزشکی مازندران، ساری، ایران

چکیده

مقدمه و هدف: با وجود اثر محافظتی پیش شرطی­سازی ایسکمی از بافتها، اثر آن بر اتوفاژی افزایش­یافته ناشی از دیابت به روشنی مشخص نیست. اتوفاژی می­تواند با فعالیت ورزشی مهار یا فعال شود. هدف از مطالعه‌ی حاضر، بررسی اثر تمرین استقامتی و پیش شرطی­سازی ایسکمی دور بر بیان ژن بکلین-1 بافت قلب موش‌ها دیابتی بود.
مواد و روش ها: در این مطالعه تجربی، 35 موش ویستار به‌صورت تصادفی به 7 گروه: کنترل سالم، دیابتی، دیابتی ایسکمی یک پا، دیابتی ایسکمی دو پا، دیابتی تمرین استقامتی، دیابتی تمرین+ایسکمی یک پا، دیابتی تمرین+ایسکمی دو پا تقسیم شدند. پیش شرطی­سازی ایسکمی شامل سه دور 5 دقیقه­ای ایسکمی و 5 دقیقه رپرفیوژن متعاقب بود. تمرین استقامتی به مدت 6 هفته و 5 روز در هفته انجام شد و شامل دویدن روی تردمیل با سرعت 9 متر در دقیقه و مدت 15 دقیقه در هفته اول بود که در هفته ششم به سرعت 18 متر در دقیقه و مدت 30 دقیقه رسید. بیان ژن بکلین-1 با روش real-time PCR اندازه‌گیری گردید. از روش آماری واریانس یکطرفه و آزمون تعقیبی توکی استفاده شد.
نتایج: بیان ژن بکلین-1 افزایش معناداری در گروه دیابتی نسبت به گروه سالم داشت (0001/0P=). در مقایسه با گروه دیابت، ایسکمی یک پا (0001/0P=)، ایسکمی دو پا (0001/0P=)، تمرین (0001/0P=)، تمرین+ایسکمی یک پا (0001/0P=) و تمرین+ایسکمی دو پا (0001/0P=) منجر به کاهش معنی­دار بیان بکلین-1 بافت قلب شد.
نتیجه‌گیری: به نظر می­رسد که اثر پیش شرطی­سازی ایسکمی در کاهش بکلین-1 مستقل از حجم عضلانی درگیر ایسکمی است. تمرین استقامتی به‌همراه پیش شرطی­سازی ایسکمی اثر بیشتری در کاهش بکلین-1 بافت قلب موشهای دیابتی نسبت به تمرین و ایسکمی تنها دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of endurance training and remote ischemic preconditioning on myocardial Beclin-1 gene expression in diabetic rats

نویسندگان [English]

  • Fazeleh Akbarnia 1
  • Amin Farzaneh Hesari 1
  • Abdollah Hashemvarzi 1
  • Aliasghar Farsavian 2
1 Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
2 Department of Cardiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
چکیده [English]

Background and Objective: Despite the protective effect of ischemic preconditioning (IPC) from tissues, its effect on diabetes-induced excessive autophagy is not clear. Autophagy could be inhibited or activated through exercise. The present study aimed to investigate the effect of endurance training and remote IPC on myocardial Beclin-1 gene expression in diabetic rats.
Materials and Method: In this experimental research, 35 Wistar rats were randomly divided into seven groups: normal control (C), diabetic (D), diabetic one leg ischemia (OI), diabetic two legs ischemia (TI), diabetic endurance training (E), diabetes one leg ischemia + endurance training (OIE), diabetes two legs ischemia+ endurance training (TIE). IPC was included three 5-minute cycles of ischemia, followed by five minutes of reperfusion. The endurance training groups performed exercise training for six weeks and five days a week and was included running on a treadmill. The speed for the first week is set at 9 meters per minute for 15 minutes. By the sixth week, the training speed was increased to 18 meters per minute for 30 minutes. Beclin-1 gene expression was measured by RT-PCR. Data were analyzed by one-way analysis of variance and Tukey post hoc tests.
Results: Beclin-1 gene expression significantly increased in D group compared to C group (p=0.0001). Becli-1 gene expression significantly decreased in OI (p=0.0001), TI (p=0.0001), E (p=0.0001), OIE (p=0.0001) and TIE (p=0.0001) compared to the D.
Conclusion: It seems that the effect of ischemia preconditioning in decreasing Beclin-1 is independent of the ischemia-affected muscle mass. Endurance training with IPC is more effective in decreasing Beclin-1 in diabetes than any of the exercise and IPC interventions alone.

کلیدواژه‌ها [English]

  • Exercise training
  • Ischemic preconditioning
  • Autophagy
  • Beclin-1
  1. Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH, Kandimalla R. Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Research Reviews 2021;68:101338.
  2. Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia-and insulin-resistance-induced heart disease. Diabetologia 2018;61(1):21-28.
  3. Quiles JM, Najor RH, Gonzalez E, Jeung M, Liang W, Burbach SM, et al. Deciphering functional roles and interplay between Beclin1 and Beclin2 in autophagosome formation and mitophagy. Science Signaling 2023;16(770):eabo4457.
  4. Vega-Rubín-de-Celis S, Kinch L, Peña-Llopis S. Regulation of beclin 1-mediated autophagy by oncogenic tyrosine kinases. International Journal of Molecular Sciences 2020;21(23):9210.
  5. Kaur S, Changotra H. The beclin 1 interactome: Modification and roles in the pathology of autophagy-related disorders. Biochimie 2020;175:34-49.
  6. Halling JF, Pilegaard H. Autophagy-dependent beneficial effects of exercise. Cold Spring Harbor Perspectives in Medicine 2017;7(8):1-17.
  7. Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient Autophagy 2011;7(12):1415-23.
  8. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature Cell Biology 2015;17(3):288-99.
  9. Vainshtein A, Tryon LD, Pauly M, Hood DA. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. American Journal of Physiology 2015;308(9):710-19.
  10. O’Brien L, Jacobs I. Methodological variations contributing to heterogenous ergogenic responses to ischemic preconditioning. Frontiers in Physiology 2021;12:656980.
  11. Lang JA, Kim J, Lang JA, Kim J. Remote ischaemic preconditioning-translating cardiovascular benefits to humans. Physiology 2022;600:3053-3067.
  12. Jones H, Nyakayiru J, Bailey TG, Green DJ, Cable NT, Sprung VS, et al. Impact of eight weeks of repeated ischaemic preconditioning on brachial artery and cutaneous microcirculatory function in healthy males. European Journal of Preventive Cardiology 2015;22:1083-87.
  13. Kono Y, Fukuda S, Hanatani A, Nakanishi K, Otsuka K, Taguchi H, et al. Remote ischemic conditioning improves coronary microcirculation in healthy subjects and patients with heart failure. Drug Design, Development and Therapy 2014;27;8:1175-81.
  14. Maxwell JD, Carter HH, Hellsten Y, Miller GD, Sprung VS, Cuthbertson DJ, et al. Seven-day remote ischaemic preconditioning improves endothelial function in patients with type 2 diabetes mellitus: a randomised pilot study. European Journal of Endocrinology 2019;181(6):659-669.
  15. Huang Z, Han Z, Ye B, Dai Z, Shan P, Lu Z, et al. Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. European Journal of Pharmacology 2015;5(762):1‑10.
  16. Guo X, Jiang H, Yang J, Chen J, Yang J, Ding JW, et al. Spermine ameliorates ischemia/reperfusion injury in cardiomyocytes via regulation of autophagy. International Journal of Molecular Medicine 2016;38:885‑
  17. Zhou B, Lei S, Xue R, Leng Y, Xia Z, Xia ZY, et al. DJ‑1 overexpression restores ischaemic post‑conditioning‑mediated cardioprotection in diabetic rats: Role of autophagy. Clinical Science 2017;131(11):61‑
  18. Hosseinzadeh M, Taheri A. The Effect of Endurance Training on Expression of Autophagy Genes (Beclin-1, ULK-1) in the Heart Tissue of Male Rats with Experimental Diabetes. Iranian Journal of Diabetes and Obesity 2022;14 (1):51-58.
  19. Zanghaneh F, farzanegi P, asgharpour H. Effect of Exercise Training and Atorvastatin Supplementation on Beclin1, LC3-I and LC3-П Expression in Old Diabetic Rats. Medical Laboratory Journal 2022;16(1):40-47.
  20. Jokar M, Sherafati Moghadam M, Daryanoosh F. The Effect of an 8-Week Endurance Training Program on the Content of FOXO3a and Beclin-1 Proteins in Heart Muscle of Rats with Type 2 Diabetes. Qazvin University of Medical Sciences 2020;23(1):484-493.
  21. Sun M, Huang C, Wang C, Zheng J, Zhang P, Xu Y, et al. Ginsenoside Rg3 improves cardiac mitochondrial population quality: mimetic exercise Biochemical and Biophysical Research Communications 2013;441(1):169-174.
  22. Charan K, Goyal A, Gupta JK, Yadav HN. Role of atrial natriuretic peptide in ischemic preconditioning‑induced cardioprotection in the diabetic rat heart. Surgical Research 2016;201:272‑
  23. Leurcharusmee P, Sawaddiruk P, Punjasawadwong Y, Sugandhavesa N, Klunklin K, Tongprasert S, et al. Ischemic preconditioning upregulates Mitofusin2 and preserves muscle strength in tourniquet-induced ischemia/reperfusion. Orthopaedic Translation 2022;4(35):113-121.
  24. Cheng Z, Li L, Mo X, Zhang L, Xie Y, Guo Q, Wang Y. Non-invasive remote limb ischemic postconditioning protects rats against focal cerebral ischemia by upregulating STAT3 and reducing apoptosis. International Journal of Molecular Medicine 2014;34(4):957-66.
  25. Arabzadeh E, Samadian Z, Tofighi A. Alteration of follistatin-like 1, neuron-derived neurotrophic factor, and vascular endothelial growth factor in diabetic cardiac muscle after moderate-intensity aerobic exercise with insulin. Sport Sciences for Health 2020;16:491-499.
  26. Li X, Hu X, Wang J, Xu W, Yi C, Ma R, Jiang H. Inhibition of autophagy via activation of PI3K/Akt/mTOR pathway contributes to the protection of hesperidin against myocardial ischemia/reperfusion injury. International Journal of Molecular Medicine 2018;42(4):1917-1924.
  27. Alizadeh Palavani H, Yaghmaei M, Mirzaee Moghamir S, Salboukhi R. The Effect of High-Intensity Interval Training on the Amount of BECLIN1/2 Family Autophagy Proteins in the Left Ventricle of the Heart in Rats with Type 1 Diabetes. Iranian Journal of Diabetes and Metabolism 2023;23(4):236-244.
  28. Moradi F, Imani A, Faghihi M. Effects of regular exercise plus food restriction on left ventricular pathological remodeling in heart failure‑induced rats. Bratislavske Lekarske Listy 2019;120(4):243-8.
  29. McMillan EM, Paré MF, Baechler BL, Graham DA, Rush JWE, Quadrilatero J. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. PLoS One 2015;10(3):e0119382.
  30. McCormick JJ, Côté MD, King KE, McManus MK, Goulet N, Dokladny K, et al. Autophagic response to exercise in peripheral blood mononuclear cells from young men is intensity-dependent and is altered by exposure to environmental heat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2022;323(4):467-82.
  31. Delshad S, Yaghoubi A, Rezaeian N. The effect of high intensity interval training on skeletal muscle autophagy biomarkers in male elderly rats. Daneshvar Medicine 2021;28(6):37-48.
  32. Lee Y, Kwon I, Jang Y, Song W, Cosio-Lima LM, Roltsch MH. Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. Physiological Sciences 2017;67(6):639-54.
  33. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012;149(2):274-93.
  34. Liu YY, Sun C, Xue FS, Yang GZ, Li HX, Liu Q, Liao X. Effect of Autophagy Inhibition on the Protection of Ischemia Preconditioning against Myocardial Ischemia/Reperfusion Injury in Diabetic Rats. Chinese Medicine 2018;131(14):1702-1709.
  35. Hu Z, Liu J, Zhou L, Tian X, Abbott GW. AKT and ERK1/2 activation via remote ischemic preconditioning prevents Kcne2-dependent sudden cardiac death. Physiological Reports 2019;7:e13957.
  36. Yang G, Yang Y, Li Y. Hu Z. Remote liver ischaemic preconditioning protects rat brain against cerebral ischaemia-reperfusion injury by activation of an AKT-dependent pathway. Experimental Physiology 2020;105:852–863.
  37. Das A, Salloum FN, Filippone SM, Durrant DE, Rokosh G, Bolli R, et al. Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Research in Cardiology 2015;110:31.
  38. Rose BA, Force T, Wang, Y. Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking Physiological Reviews 2010;90:1507-1546.
  39. Liu X, Chen H, Yan Z, Du L, Huang D, Gao WD, Hu Z, et al. Remote liver ischemic preconditioning attenuates myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Scientific Reports 2021;11(1):1903.
  40. Kleinbongard P, Skyschally A, Gent S, Pesch M, Heusch G. STAT3 as a common signal of ischemic conditioning: A lessonon “rigor and reproducibility” in preclinical studies on cardioprotection. Basic Research in Cardiology 2018;113(3):26-42.
  41. Luo N, Liu J, Chen Y, Li H, Hu Z, Abbott GW. Remote ischemic preconditioning STAT3-dependently ameliorates pulmonary ischemia/reperfusion injury. PloS ONE 2018;13: e0196186.
  42. Nishihara M, Miura T, Miki T, Sakamoto J, Tanno M, Kobayashi H, et al. Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3 beta. Heart and Circulatory Physiology 2006;291:748-755.
  43. Lipšic E, Schoemaker R, Meer P, Adriaan A. Dirk J, Wiek H. Protective Effects of Erythropoietin in Cardiac Ischemia: From Bench to Bedside. American College of Cardiology 2006;48(11):2161-67.