تاثیر 12 هفته تمرین تداومی و تناوبی شدید بر سطوح سرمی پروگرانولین و MCP-1 در زنان مبتلا به دیابت نوع ۲

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه تربیت بدنی و علوم ورزشی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

مقدمه و هدف: برهم خوردن تنظیم سطوح آدیپوکاین­ها در پاتوژنز دیابت نوع2 نقش مهمی دارد. باوجود این، تمرینات ورزشی بواسطه تعدیل سطوح آدیپوکاین­ها می­تواند در بهبود کنترل گلیسمیک در بیماران دیابتی نوع2 موثر باشد. در مطالعه حاضر، تاثیر 12 هفته تمرین تناوبی شدید (HIIT) و تداومی با شدت متوسط (MICT) بر سطوح سرمی پروگرانولین و MCP-1 در زنان دیابتی نوع2 بررسی شد.
مواد و روش ها: تعداد 36 زن دیابتی نوع2 واجد شرایط و داوطلب در سه گروه کنترل، HIIT و MICT به صورت تصادفی تقسیم شدند. پروتکل HIIT (90 درصد ضربان قلب بیشینه) و MICT (60 تا 70 درصد ضربان قلب بیشینه) هر دو به مدت 12 هفته روی نوارگردان اجرا شدند. نمونه­های خونی در مراحل پیش آزمون و پس آزمون جمع­آوری شدند. تغییرات بین گروهی با آزمون آنالیز کوواریانس تعیین شد و سطح معناداری 05/0>p بود.
نتایج: نتایج حاضر نشان داد که HIIT (001/0>p) و MICT (014/0=p) هر دو به کاهش معنادار سطوح سرمی MCP-1 منجر شده­اند. باوجود این، کاهش پروگرانولین نسبت به گروه کنترل تنها در گروه HIIT مشاهده شد (001/0>p) و MICT تاثیر معناداری بر سطوح پروگرانولین نداشت (077/0=p). کاهش درصد چربی بدن و مقاومت به انسولین نیز با هر دو پروتکل HIIT و MICT در مقایسه با گروه کنترل معنادار بود (001/0>P).
نتیجه‌گیری: تمرینات HIIT و MICT هر دو در تعدیل آدیپوکاین­ها در بیماران دیابتی نوع2 موثر هستند. باوجود این، تاثیرگذاری HIIT در مقایسه با MICT از جمله در کاهش سطوح پروگرانولین بیشتر بود که اهمیت توجه بیشتر به HIIT در مدیریت دیابت نوع2 را نشان می­دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of 12 weeks of continuous and high intensity interval training on the serum levels of progranulin and MCP-1 in type2 diabetic women

نویسندگان [English]

  • Yones Hemati Ardali
  • Mandana Gholami
  • غزالیان Farshad
  • Shahram Soheili
Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Background and Objective: Adipokines dysregulation plays important role in the type 2 diabetes (T2D) pathogenesis. However, exercise training can be effective in improving the glycemic control in T2D patients by modulating the adipokines levels. In the present research, the effects of 12 weeks of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) on the serum levels of progranulin and MCP-1 in type2 diabetic women have been investigated.
Materials and Methods: 36 qualified and volunteer women with T2D were randomly assigned in the three groups including control, MICT and HIIT groups. Both HIIT (90 percent of maximum heart rate) and MICT (60 to 70 percent of maximum heart rate) protocols were conducted on treadmill for 12 weeks. Blood samples were collected in pre and post-test stages. Between groups difference were determined by analysis of covariance test and significant level was P<0.05.
Results: The present study findings indicated that both HIIT (p<0.001) and MICT (p=0.014) protocols cause significant decrease in the MCP-1 levels. However, the progranulin reduction compared to the control group was significant only in the HIIT group (p<0.001) and MICT does not have significant effect on the progranulin levels (p=0.077). Decrease in body fat percentage and insulin resistance was also significant for both HIIT and MICT protocols compared to the control group (p<0.001).
Conclusion: Both HIIT and MICT exercise trainings are effective for modulating the adipokines levels in the T2D patients. However, the effectiveness of HIIT was greater for reduction of progranulin levels compared to the MICT group, which indicates the importance of paying more attention to HIIT in the management of T2D.

کلیدواژه‌ها [English]

  • Type 2 Diabetes
  • Monocyte chemoattractant protein-1
  • Progranulin
  • High intensity interval training
  • Moderate intensity continuous training
  1. Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, et al. National, regional, and global trends in adult overweight and obesity prevalences. Population Health Metrics. 2012;10:1-16.
  2. Fasshauer M, Blüher M. Adipokines in health and disease. Trends in Pharmacological Sciences. 2015;36(7): 461-70.
  3. Jialal I, Devaraj S. Subcutaneous adipose tissue biology in metabolic syndrome. Hormone Molecular Biology and Clinical Investigation. 2018;33(1):20170074.
  4. Jung UJ, Choi M-S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International Journal of Molecular Sciences. 2014;15(4):6184-223.
  5. Rodríguez A, Becerril S, Hernández-Pardos AW, Frühbeck G. Adipose tissue depot differences in adipokines and effects on skeletal and cardiac muscle. Current Opinion in Pharmacology. 2020;52:1-8.
  6. Panee J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine. 2012;60(1):1-12.
  7. Christiansen T, Richelsen B, Bruun J. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. International Journal of Obesity. 2005;29(1):146-50.
  8. Bruun JM, Lihn AS, Pedersen SB, Richelsen B. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. The Journal of clinical Endocrinology & Metabolism. 2005;90(4):2282-9.
  9. Freitas Lima LC, Braga VdA, do Socorro de França Silva M, Cruz JdC, Sousa Santos SH, de Oliveira Monteiro MM, et al. Adipokines, diabetes and atherosclerosis: an inflammatory association. Frontiers in Physiology. 2015;6:304.
  10. Korolczuk A. Progranulin, a new adipokine at the crossroads of metabolic syndrome, diabetes, dyslipidemia and hypertension. Current Pharmaceutical Design. 2017;23(10):1533-9.
  11. Qu H, Deng H, Hu Z. Plasma progranulin concentrations are increased in patients with type 2 diabetes and obesity and correlated with insulin resistance. Mediators of Inflammation. 2013;2013(1):360190.
  12. Youn B-S, Bang S-I, Kloting N, Park JW, Lee N, Oh J-E, et al. Serum progranulin concentrations may be associated with macrophage infiltration into omental adipose tissue. Diabetes. 2009;58(3):627-36.
  13. Sakurai T, Ogasawara J, Shirato K, Izawa T, Oh-Ishi S, Ishibashi Y, et al. Exercise training attenuates the dysregulated expression of adipokines and oxidative stress in white adipose tissue. Oxidative Medicine and Cellular Longevity. 2017;2017(1):9410954.
  14. Trøseid M, Lappegård KT, Claudi T, Damås JK, Mørkrid L, Brendberg R, et al. Exercise reduces plasma levels of the chemokines MCP-1 and IL-8 in subjects with the metabolic syndrome. European Heart Journal. 2004;25(4):349-55.
  15. Sakurai T, Izawa T, Kizaki T, Ogasawara J-e, Shirato K, Imaizumi K, et al. Exercise training decreases expression of inflammation-related adipokines through reduction of oxidative stress in rat white adipose tissue. Biochemical and Biophysical Research Communications. 2009;379(2):605-9.
  16. Safarzade A, Alizadeh H, Bastani Z. The effects of circuit resistance training on plasma progranulin level, insulin resistance and body composition in obese men. Hormone Molecular Biology and Clinical Investigation. 2020;41(2):20190050.
  17. De Nardi AT, Tolves T, Lenzi TL, Signori LU, da Silva AMV. High-intensity interval training versus continuous training on physiological and metabolic variables in prediabetes and type 2 diabetes: a meta-analysis. Diabetes Research and Clinical Practice. 2018;137:149-59.
  18. Liu J-x, Zhu L, Li P-j, Li N, Xu Y-b. Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: a systematic review and meta-analysis. Aging Clinical and Experimental Research. 2019;31:575-93.
  19. Quattrocchi E, Goldberg T, Marzella N. Management of type 2 diabetes: consensus of diabetes organizations. Drugs in Context. 2020;9.
  20. Schjerve IE, Tyldum GA, Tjønna AE, Stølen T, Loennechen JP, Hansen HE, et al. Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical Science. 2008;115(9):283-93.
  21. Lemmens HJ, Brodsky JB, Bernstein DP. Estimating ideal body weight–a new formula. Obesity Surgery. 2005;15(7):1082-3.
  22. Onishi Y, Hayashi T, Sato KK, Ogihara T, Kuzuya N, Anai M, et al. Fasting tests of insulin secretion and sensitivity predict future prediabetes in Japanese with normal glucose tolerance. Journal of Diabetes Investigation. 2010;1(5):191-5.
  23. Kostopoulou E, Kalavrizioti D, Davoulou P, Papachristou E, Sinopidis X, Fouzas S, et al. Monocyte Chemoattractant Protein-1 (MCP-1), activin-a and clusterin in children and adolescents with obesity or type-1 diabetes mellitus. Diagnostics. 2024;14(4):450.
  24. Salim HM, Aisyah A, Shimabukuro M. Exercise decrease the expression of MCP-1 in perivascular adipose tissue (PVAT) in obese mice. Bali Medical Journal. 2022;11(3):1126-9.
  25. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K-i, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of Clinical Investigation. 2006;116(6):1494-505.
  26. Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. International Immunopharmacology.2021;101:107598.
  27. Bloomer RJ, Fisher-Wellman KH. Blood oxidative stress biomarkers: influence of sex, exercise training status, and dietary intake. Gender Medicine. 2008;5(3):218-28.
  28. Liu L-B, Chen X-D, Zhou X-Y, Zhu Q. The Wnt antagonist and secreted frizzled-related protein 5: implications on lipid metabolism, inflammation, and type 2 diabetes mellitus. Bioscience Reports. 2018;38(4):BSR20180011.
  29. Zhang X, Liu Z, Li W, Kang Y, Xu Z, Li X, et al. MAPKs/AP-1, not NF-κB, is responsible for MCP-1 production in TNF-α-activated adipocytes. Adipocyte. 2022;11(1):477-86.
  30. Xu L, Zhou B, Li H, Liu J, Du J, Zang W, et al. Serum levels of progranulin are closely associated with microvascular complication in type 2 diabetes. Disease Markers. 2015;2015(1):357279.
  31. Donma O, Donma MM. Progranulin: Is it a new adipocytokine at the crossroads of obesity, metabolic syndrome and cancer. LIFE: Int J Health Life Sci. 2017;3(3):29-37.
  32. Matsubara T, Mita A, Minami K, Hosooka T, Kitazawa S, Takahashi K, et al. PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue. Cell Metabolism. 2012;15(1):38-50.
  33. Farazmandi A, REZAEIAN N. Effect of High Intensity Interval Training on Serum Levels of Progranulin and Insulin Resistance Index in Young Sedentary Overweight and Obese Women. Journal of Applied Exercise Physiology. 2020;16(31):167-79.
  34. Hwang SL, Jeong YT, Li X, Kim YD, Lu Y, Chang YC, et al. Inhibitory cross‐talk between the AMPK and ERK pathways mediates endoplasmic reticulum stress‐induced insulin resistance in skeletal muscle. British Journal of Pharmacology. 2013;169(1):69-81.
  35. Öst A, Svensson K, Ruishalme I, Brännmark C, Franck N, Krook H, et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Molecular Medicine. 2010;16:235-46.
  36. Nicoletto BB, Canani LH. The role of progranulin in diabetes and kidney disease. Diabetology & Metabolic Syndrome. 2015;7:1-8.