اثر لوزارتان بر هایپرتروفی قلبی و پروفایل لیپیدی سرم در مدل پیری القاء شده توسط د-گالاکتوز در موش سفید بزرگ آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده پزشکی، دانشگاه علوم پزشکی همدان، همدان، ایران

2 گروه قلب و عروق، دانشکده پزشکی، دانشگاه علوم پزشکی همدان، همدان، ایران

3 گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی همدان، همدان، ایران

4 گروه علوم اعصاب، دانشکده علوم و فناوری پیشرفته در پزشکی، دانشگاه علوم پزشکی همدان، همدان، ایران

10.22070/daneshmed.2024.19253.1507

چکیده

مقدمه و هدف: افزایش سن یک عامل خطر اصلی برای ایجاد بیماری های قلبی عروقی است. لوزارتان یک داروی ضد فشارخون است که اثرات امیدوار کننده ای در بهبود بیماری های قلبی عروقی نشان داده است. هدف این مطالعه بررسی تاثیر لوزارتان بر هایپرتروفی قلبی، مارکرهای آسیب قلبی شامل لاکتات دهیدروژناز (LDH) و کراتین کیناز قلبی (CK-MB) و پروفایل لیپیدی ناشی از مدل سالخوردگی القا شده با د-گالاکتوز در موش های سفید بزرگ آزمایشگاهی نر می باشد.
مواد و روش ها: موش های سفید بزرگ آزمایشگاهی به طور تصادفی به 3 گروه که در هر گروه 8 سر موش قرار گرفت، شامل گروه کنترل، گروه سالخورده القا شده با د-گالاکتوز و گروه سالخورده القا شده با د-گالاکتوز و دریافت کننده لوزارتان تقسیم شدند. اندازه گیری هایپرتروفی قلبی توسط بررسی بافت شناسی و اندازه گیری وزن قلب و وزن بدن، انجام شد. همچنین سطح سرمی پروفایل لیپیدی و مارکرهای آسیب قلبی اندازه گیری شد. 
نتایج: یافته ها نشان داد که پیری القا شده با د-گالاکتوز باعث هایپرتروفی قلبی، هایپرلیپیدمی و افزایش سطح سرمی مارکرهای آسیب قلبی می شود. در حالی که درمان با لوزارتان باعث کاهش هایپرتروفی قلبی، کاهش کلسترول، کاهش در لیپوپروتئین با چگالی کم(LDL) و کاهش مارکرهای آسیب قلبی در موش های سالخورده شد.
نتیجه‌گیری: نتایج مطالعه حاضر نشان می دهد که لوزارتان در بهبود هایپرتروفی قلبی و کاهش آسیب های قلبی ناشی از پیری القا شده با د-گالاکتوز که تا حدی با بهبود پروفایل لیپیدی انجام می شود موثر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of losartan on cardiac hypertrophy and serum lipid profile in the aging model induced by D-galactose in rats

نویسندگان [English]

  • Amir Hossein Shamsi 1
  • Farnaz Fariba 2
  • Siamak Shahidi 3
  • Abdolrahman Sarihi 4
  • Fatemeh Ramezani-Aliakbari 3
1 Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
2 Department of Cardiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
3 Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
4 Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
چکیده [English]

Background and Objective: Aging is a major risk factor for developing cardiovascular diseases. Losartan is an antihypertensive drug that has shown promising effects in improving cardiovascular diseases. The aim of this study was to investigate the effect of Losartan on cardiac hypertrophy, cardiac damage markers including lactate dehydrogenase (LDH) and cardiac creatine kinase (CK-MB), and lipid profile due to D-galactose induced aging model in male rats.
Materials and Methods: The rats were randomly divided into 3 groups, with 8 rats in each group, including the control group, the aged group induced with D-galactose, and the aged group induced with D-galactose and receiving Losartan. Cardiac hypertrophy was measured by histological examination and measurement of heart weight and body weight. Also, serum lipid profile and heart damage markers were measured.
Results: The findings showed that aging induced by D-galactose causes cardiac hypertrophy, hyperlipidemia and increased serum levels of heart damage markers. In addition, treatment with Losartan decreased cardiac hypertrophy, decreased cholesterol, decreased low density lipoprotein (LDL), and decreased cardiac injury markers in aged rats.
Conclusion: The results of the present study show that Losartan is effective in improving cardiac hypertrophy and reducing heart damage caused by D-galactose-induced aging, which is partially done by improving lipid profile.

کلیدواژه‌ها [English]

  • Aging
  • Losartan
  • Hypertrophy
  • Lactate Dehydrogenase
  • Creatine Kinase
  1. Niccoli T, Partridge L. Ageing as a risk factor for disease. Current Biology 2012;22(17):R741-R52.
  2. Tasatargil A, Kuscu N, Dalaklioglu S, Adiguzel D, Celik-Ozenci C, Ozdem S, et al. Cardioprotective effect of nesfatin-1 against isoproterenol-induced myocardial infarction in rats: role of the Akt/GSK-3β Peptides 2017;95:1-9.
  3. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine 2000;29(3-4):222-230.
  4. Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2018;1859(9):940-950.
  5. Klimiuk A, Zalewska A, Sawicki R, Knapp M, Maciejczyk M. Salivary oxidative stress increases with the progression of chronic heart failure. Journal of Clinical Medicine 2020;9(3):769.
  6. Sun S-L, Guo L, Ren Y-C, Wang B, Li R-H, Qi Y-S, et al. Anti-apoptosis effect of polysaccharide isolated from the seeds of Cuscuta chinensis Lam on cardiomyocytes in aging rats. Molecular Biology Reports 2014;41:6117-6124.
  7. Cebe T, Yanar K, Atukeren P, Ozan T, Kuruç AI, Kunbaz A, et al. A comprehensive study of myocardial redox homeostasis in naturally and mimetically aged rats. Age 2014;36:1-14.
  8. Bucala R, Cerami A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Advances in Pharmacology 1992;23:1-34.
  9. Chang Y-M, Chang H-H, Kuo W-W, Lin H-J, Yeh Y-L, Padma Viswanadha V, et al. Anti-apoptotic and pro-survival effect of alpinate oxyphyllae fructus (AOF) in a d-galactose-induced aging heart. International Journal of Molecular Sciences 2016;17(4):466.
  10. Parini P, Angelin B, Rudling M. Cholesterol and lipoprotein metabolism in aging: reversal of hypercholesterolemia by growth hormone treatment in old rats. Arteriosclerosis, Thrombosis, and Vascular Biology 1999;19(4):832-839.
  11. Rubio-Ruíz M, Del Valle-Mondragón L, Castrejón-Tellez V, Carreón-Torres E, Díaz-Díaz E, Guarner-Lans V. Angiotensin II and 1-7 during aging in Metabolic Syndrome rats. Expression of AT1, AT2 and Mas receptors in abdominal white adipose tissue. Peptides 2014;57:101-108.
  12. Bruce EB, Sakarya Y, Kirichenko N, Toklu HZ, Sumners C, Morgan D, et al. ACE2 activator diminazene aceturate reduces adiposity but preserves lean mass in young and old rats. Experimental Gerontology 2018;111:133-140.
  13. Meredith PA. Angiotensin II receptor antagonists alone and combined with hydrochlorothiazide: potential benefits beyond the antihypertensive effect. American Journal of Cardiovascular Drugs 2005;5:171-183.
  14. Ran J, Hirano T, Adachi M. Angiotensin II type 1 receptor blocker ameliorates overproduction and accumulation of triglyceride in the liver of Zucker fatty rats. American Journal of Physiology-Endocrinology and Metabolism 2004;287(2):E227-E32.
  15. Al-Majed A-RA, Assiri E, Khalil NY, Abdel-Aziz HA. Losartan: comprehensive profile. Profiles of Drug Substances, Excipients and Related Methodology 2015;40:159-194.
  16. Sica DA, Gehr TW, Ghosh S. Clinical pharmacokinetics of losartan. Clinical pharmacokinetics 2005;44:797-814.
  17. Høieggen A, Alderman MH, Kjeldsen SE, Julius S, Devereux RB, De Faire U, et al. The impact of serum uric acid on cardiovascular outcomes in the LIFE study. Kidney International 2004;65(3):1041-1049.
  18. Sivasubramaniam S, Kumarasamy B. Pleiotropic effects of losartan in hypertensive patients with dyslipidemia. Journal of Clinical and Diagnostic Research 2017;11(9):FC05.
  19. Chang Y-M, Chang H-H, Lin H-J, Tsai C-C, Tsai C-T, Chang H-N, et al. Inhibition of cardiac hypertrophy effects in d-galactose-induced senescent hearts by alpinate oxyphyllae fructus treatment. Evidence-Based Complementary and Alternative Medicine 2017; 2017:2624384. doi: 10.1155/2017/2624384.
  20. Nekooeian AA, Pour AR, Dehghani F, Mashghoolozekr E, Esmaeilpour T. Effects of Captopril and Losartan on Cardiac Stereology in Rats with Renovascular Hypertension. Iranian Journal of Medical Sciences 2021;46(3):169.
  21. Javidanpour S, Dianat M, Badavi M, Mard SA. The inhibitory effect of rosmarinic acid on overexpression of NCX1 and stretch-induced arrhythmias after acute myocardial infarction in rats. Biomedicine & Pharmacotherapy 2018;102:884-893.
  22. Shackebaei D, Hesari M, Ramezani-Aliakbari S, Hoseinkhani Z, Ramezani-Aliakbari F. Gallic acid protects against isoproterenol-induced cardiotoxicity in rats. Human & Experimental Toxicology 2022;41:09603271211064532.
  23. Shackebaei D, Hesari M, Ramezani-Aliakbari S, Pashaei M, Yarmohammadi F, Ramezani-Aliakbari F. Cardioprotective effect of naringin against the ischemia/reperfusion injury of aged rats. Naunyn-Schmiedeberg's Archives of Pharmacology 2023:1-10.
  24. Shahidi S, Ramezani-Aliakbari K, Komaki A, Salehi I, Hashemi S, Asl SS, et al. Effect of vitamin D on cardiac hypertrophy in D-galactose-induced aging model through cardiac mitophagy. Molecular Biology Reports 2023;50(12):10147-10155.
  25. Zarei M, Sarihi A, Zamani A, Raoufi S, Karimi SA, Ramezani-Aliakbari F. Mitochondrial biogenesis and apoptosis as underlying mechanisms involved in the cardioprotective effects of Gallic acid against D-galactose-induced aging. Molecular Biology Reports 2023;50(10):8005-8014.
  26. Wang J, Bai Y, Zhao X, Ru J, Kang N, Tian T, et al. oxLDL-mediated cellular senescence is associated with increased NADPH oxidase p47phox recruitment to caveolae. Bioscience Reports 2018;38(3):BSR20180283.
  27. Ahmad F, Leake DS. Lysosomal oxidation of LDL alters lysosomal pH, induces senescence, and increases secretion of pro-inflammatory cytokines in human macrophages [S]. Journal of Lipid Research 2019;60(1):98-110.
  28. Liu H-H, Li J-J. Aging and dyslipidemia: a review of potential mechanisms. Ageing research reviews. 2015;19:43-52.
  29. Lansky AJ, Stone GW. Periprocedural myocardial infarction: prevalence, prognosis, and prevention. Circulation: Cardiovascular Interventions 2010;3(6):602-610.
  30. Reddy RK, Reddy S, Kumar AN. Lipid Profile levels on the second day of Acute Myocardial Infarction; is it the right time for estimation? Internet Journal of Medical 2012;7(1).
  31. Patil N, Chavan V, Karnik N. Antioxidant status in patients with acute myocardial infarction. Indian Journal of Clinical Biochemistry 2007;22:45-51.
  32. Park K-H, Kim J-Y, Choi I, Kim J-R, Won KC, Cho K-H. Fructated apolipoprotein AI exacerbates cellular senescence in human umbilical vein endothelial cells accompanied by impaired insulin secretion activity and embryo toxicity. Biochemistry and Cell Biology 2016;94(4):337-345.
  33. Lu J, Jiang W, Yang J-H, Chang P-Y, Walterscheid JP, Chen H-H, et al. Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes 2008;57(1):158-166.
  34. Tai M-H, Kuo S-M, Liang H-T, Chiou K-R, Lam H-C, Hsu C-M, et al. Modulation of angiogenic processes in cultured endothelial cells by low density lipoproteins subfractions from patients with familial hypercholesterolemia. Atherosclerosis 2006;186(2):448-457.
  35. Liberale L, Badimon L, Montecucco F, Lüscher TF, Libby P, Camici GG. Inflammation, aging, and cardiovascular disease: JACC review topic of the week. Journal of the American College of Cardiology 2022;79(8):837-847.
  36. Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. The Journal of Physiology 2020;598(14):2977-2993.
  37. Henriksen EJ. Improvement of insulin sensitivity by antagonism of the renin-angiotensin system. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2007;293(3):R974-R80.
  38. Mihailovic-Stanojevic N, Miloradovic Z, Grujic-Milanovic J, Ivanov M, Jovovic D. Effects of angiotensin II type-1 receptor blocker losartan on age-related cardiovascular risk in spontaneously hypertensive rats. General Physiology and Biophysics 2009;28:112-118.
  39. Dai D-F, Rabinovitch PS. Cardiac aging in mice and humans: the role of mitochondrial oxidative stress. Trends in Cardiovascular Medicine 2009;19(7):213-220.
  40. Ramachandra CJ, Cong S, Chan X, Yap EP, Yu F, Hausenloy DJ. Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets. Free Radical Biology and Medicine 2021;166:297-312.
  41. Girotti AW. Mechanisms of lipid peroxidation. Journal of free radicals in biology & medicine. 1985;1(2):87-95.
  42. Hassan MQ, Akhtar MS, Akhtar M, Ali J, Haque SE, Najmi AK. Edaravone protects rats against oxidative stress and apoptosis in experimentally induced myocardial infarction: Biochemical and ultrastructural evidence. Redox Report 2015;20(6):275-281.