تأثیر 12 هفته تمرین مقاومتی بر سطوح سرمی FGF6 و MyoD و ارتباط آن با قدرت عضلانی مردان و زنان میان‌سال

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه آموزشی علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه لرستان، خرم آباد، ایران

چکیده

مقدمه و هدف: به نظر می‌رسد در جریان اجرای تمرینات مقاومتی میزان انتشار برخی از فاکتورهای رشدی اثرات متفاوتی بر فعال‌سازی سلول‌های ماهواره‌ای و عوامل تنظیمی مایوژنیکی و همچنین توسعه قدرت و توده عضلانی افراد داشته باشد. هدف از مطالعه حاضر بررسی اثر 12 هفته تمرین مقاومتی بر سطوح سرمی FGF6 و MyoD و ارتباط آن با قدرت عضلانی مردان و زنان میان‌سال بود.
مواد و روش ها: در مطالعه‌ای نیمه‌تجربی، 40 نفر از زنان و مردان میان‌سال شهرستان اراک (میانگین سنی 6.03 ±38.27 سال، وزن 11.28±77.12 کیلوگرم، قد 7.24± 174.05 سانتیمتر) انتخاب و به‌صورت تصادفی در دو گروه تجربی (30 نفر) و کنترل (10 نفر) قرار گرفتند. گروه تمرینی 12 هفته تمرینات مقاومتی را به‌صورت 3 جلسه در هفته و با شدت 65 تا 80 درصد قدرت بیشینه اجرا کردند. 48 ساعت قبل و پس از مداخله از تمامی آزمودنی‌ها خون‌گیری و سطوح پلاسمایی FGF-6 و MyoD به روش الایزا بررسی شد. پس از بررسی نرمال‌بودن داده‌ها، به ترتیب از آزمون t هم‌بسته و t مستقل برای بررسی تغییرات درون‌گروهی و بین‌گروهی، همچنین از ضرب هم‌بستگی پیرسون برای بررسی ارتباط بین متغیرها در سطح معنی‌داری کمتر از 05/0 استفاده شد.
نتایج: تمرین مقاومتی باعث افزایش معنی‌دار میانگین قدرت بیشینه (008/0=P)، غلظت سرمی FGF6 (002/0=P)، غلظت سرمی MyoD (001/0=P) و همچنین کاهش درصد چربی (021/0=P) زنان و مردان میان‌سال شد. علاوه‌براین هم‌بستگی مثبت و معنی‌داری بین میانگین قدرت بیشینه (1RM) با میزان غلظت سرمی FGF6 (001/0=P)  و MYoD (001/0=P) گروه تمرینی وجود داشت.
نتیجه‌گیری: با توجه به اهمیت تمرینات مقاومتی در سنین بالا و ارتباط بین سطوح پلاسمایی FGF6 و MYoD با میزان توسعه قدرت، پیشنهاد می‌شود متخصصان حوزه ورزش در طراحی تمرینات مختلف ورزشی بر ضرورت اجرای تمرینات مقاومتی اهتمام ویژه داشته باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of 12 weeks of resistance training on the serum levels of FGF6 and MyoD and its relationship with muscle strength in middle-aged men and women

نویسندگان [English]

  • Mohsen Yaghoubi
  • Rahim Mirnasuri
  • Masoud Rahmati
Department of Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran
چکیده [English]

Background and Objective: It seems that during resistance exercises, the release of some growth factors has different effects on the activation of satellite cells (SCs) and myogenic regulatory factors as well as the development of strength and muscle mass. Therefore, this study aimed to investigate the effect of 12 weeks of resistance training on the serum levels of FGF6 and MyoD and its relationship with muscle strength in middle-aged men and women.
Materials and Methods: In this semi-experimental study, 40 randomly selected middle-aged men and women from Arak city (age: 38.27±6.03 years, weight: 77.12±11.28 kg, height: 174.05±7.24 cm) were chosen. They were placed in two experimental groups (n: 30) and control (n: 10). The training program included 12 weeks of resistance training in 3 sessions per week with an intensity of 65-80% of one repetition maximum (1RM). Then, 48 hours before and after the intervention, the serum concentration of FGF-6 and MyoD was measured by the ELISA method, and after checking the normality of the data, t-test and independent t-test were used to check intra-group and inter-group changes, respectively. Pearson's correlation coefficient was used to check the relationship between variables at a significance level of p<0.05.
Results: Resistance training increased mean maximal strength (P=0.008), serum FGF6 concentration (P=0.002), serum MyoD concentration (P=0.001) and also decreased fat percentage (P=0.021) of the subjects. In addition, there was a positive and significant correlation between the mean maximum strength (1RM) and the serum concentration of FGF6 (r=0.624 and P=0.001) and MYoD (r=0.434 and P=0.001) of the training group.
Conclusion: Considering the importance of resistance training in the elderly and the relationship between the plasma levels of FGF6 and MYoD with strength development, it is suggested that sports experts pay special attention to the necessity of resistance training in the design of various sports exercises.

کلیدواژه‌ها [English]

  • Resistance training
  • Satellite cells
  • Fibroblast growth factors-6
  • Myogenic differentiation factor
  1. Alizadeh Pahlavani H. Exercise therapy for people with sarcopenic obesity: myokines and adipokines as effective actors. Frontiers in Endocrinology. 2022;13:811751.
  2. Cho S, Lee H, Lee H-Y, Kim SJ, Song W. The effect of fibroblast growth factor receptor inhibition on resistance exercise training-induced adaptation of bone and muscle quality in mice. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology. 2022;26(3):207-18.
  3. Hirschfeld H, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporosis International. 2017;28:2781-90.
  4. Greig C, Gray C, Rankin D, Young A, Mann V, Noble B, Atherton P. Blunting of adaptive responses to resistance exercise training in women over 75 y. Experimental gerontology. 2011;46(11):884-90.
  5. Hanssen K, Kvamme N, Nilsen T, Rønnestad B, Ambjørnsen I, Norheim F, et al. The effect of strength training volume on satellite cells, myogenic regulatory factors, and growth factors. Scandinavian journal of medicine & science in sports. 2013;23(6):728-39.
  6. Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. The FEBS Journal. 2022.
  7. Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdisciplinary Reviews: Developmental Biology. 2015;4(3):215-66.
  8. Eash J, Olsen A, Breur G, Gerrard D, Hannon K. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension. BMC musculoskeletal disorders. 2007;8(1):1-12.
  9. Armand A-S, Laziz I, Chanoine C. FGF6 in myogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2006;1763(8):773-8.
  10. Israeli D, Benchaouir R, Ziaei S, Rameau P, Gruszczynski C, Peltekian E, et al. FGF6 mediated expansion of a resident subset of cells with SP phenotype in the C2C12 myogenic line. Journal of cellular physiology. 2004;201(3):409-19.
  11. Hindi SM, Kumar A. Toll-like receptor signalling in regenerative myogenesis: Friend and foe. The Journal of pathology. 2016;239(2):125-8.
  12. Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2020;12(1):e1462.
  13. Aguiar AF, Vechetti-Junior IJ, De Souza RA, Castan EP, Milanezi-Aguiar RC, Padovani C, et al. Myogenin, MyoD and IGF-I regulate muscle mass but not fiber-type conversion during resistance training in rats. International journal of sports medicine. 2013;34(04):293-301.
  14. Wang R, Chen F, Chen Q, Wan X, Shi M, Chen AK, et al. MyoD is a 3D genome structure organizer for muscle cell identity. Nature communications. 2022;13(1):1-17.
  15. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? The Journal of cell biology. 2004;166(3):347-57.
  16. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. The Journal of cell biology. 2006;172(1):91-102.
  17. Snijders T, Nederveen JP, Bell KE, Lau SW, Mazara N, Kumbhare DA, et al. Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. The Journal of physiology. 2019;597(1):105-19.
  18. Esmaeili H, Nemati J, Daryanoosh F, Hemmatinafar M. Effect of Eight Weeks of Resistance Training on PAX7 and MyoD in Fast and Slow-Twitch Skeletal Muscles of Old Rats. Hormozgan Medical Journal. 2021;25(2):85-9.
  19. Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA. Reduced differentiation potential of primary MyoD−/− myogenic cells derived from adult skeletal muscle. The Journal of cell biology. 1999;144(4):631-43.
  20. Gundersen K, Bruusgaard J, Egner I, Larsen T, Dupre-Aucouturier S, Desplanches D. No change in myonuclear number during muscle. J Appl Physiol. 2012;113:290-6.
  21. Snijders T, Aussieker T, Holwerda A, Parise G, van Loon LJ, Verdijk LB. The concept of skeletal muscle memory: Evidence from animal and human studies. Acta physiologica. 2020;229(3):e13465.
  22. Blocquiaux S, Gorski T, Van Roie E, Ramaekers M, Van Thienen R, Nielens H, et al. The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Experimental gerontology. 2020;133:110860.
  23. Ramezani S, Porrahim Ghouroghchi A, Yaghobi M, Afroundeh R, Rasouli M. The Effect of Eight Weeks of Resistance Training on the Plasma Levels of Preptin and Endothelin 1 in Men with Type 2 Diabetes. Iranian Journal of Diabetes and Metabolism. 2023;23(2):80-90.
  24. Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. Journal of physical education, recreation & dance. 1993;64(1):88-90.
  25. Khadivi Borujeny A, Marandi M, Haghjooy Javanmard S, Rajabi H, Khadivi Burojeny Z, Khorshidi Behzadi M. Effect of eight weeks of resistance training on some signaling factors affecting on the satellite cells in wistar rats. Journal of isfahan medical school. 2012;30(207):1500-11.
  26. Laziz I, Ferry A, Armand A-S, Gallien CL, Gaspera BD, Charbonnier F, Chanoine C. Eccentric stimulation reveals an involvement of FGF6 in muscle resistance to mechanical stress. European journal of applied physiology. 2011;111:1507-15.
  27. Zofkie W, Southard SM, Braun T, Lepper C. Fibroblast growth factor 6 regulates sizing of the muscle stem cell pool. Stem cell reports. 2021;16(12):2913-27.
  28. Fiore F, Sébille A, Birnbaum D. Skeletal muscle regeneration is not impaired in Fgf6−/− mutant mice. Biochemical and biophysical research communications. 2000;272(1):138-43.
  29. Tidball JG. Mechanical signal transduction in skeletal muscle growth and adaptation. Journal of Applied Physiology. 2005;98(5):1900-8.
  30. Amarante do Nascimento M, Nunes JP, Pina FL, Ribeiro AS, Carneiro NH, Venturini D, et al. Comparison of 2 weekly frequencies of resistance training on muscular strength, body composition, and metabolic biomarkers in resistance-trained older women: Effects of detraining and retraining. Journal of Strength and Conditioning Research. 2022;36(5):1437-44.
  31. Aqaamini Fashami M, Matin Homayi H. Response of MyoD and MRF4 Myokines to Eccentric and Concentric Activity in Healthy Young Men. Journal of Animal Biology. 2022;14(2):119-28.
  32. Soltanian E, Arabmomeni A. Comparison of the Effect of Circular Resistance Training and High-Intensity Functional Training on Activating Factors of Satellite Cells (MyoD‎‏ andMyf-5) in Non-Athlete Young Men. Community Health Journal. 2023;17(2):39-50.
  33. Majd SK, Gholami M, Bazgir B. PAX7 and MyoD proteins expression in response to eccentric and concentric resistance exercise in active young men. Cell Journal (Yakhteh). 2023;25(2):135.
  34. Petkov S, Brenmoehl J, Langhammer M, Hoeflich A, Röntgen M. Myogenic precursor cells show faster activation and enhanced differentiation in a male mouse model selected for advanced endurance exercise performance. Cells. 2022;11(6):1001.
  35. Liu Y, Heinichen M, Wirth K, Schmidtbleicher D, Steinacker JM. Response of growth and myogenic factors in human skeletal muscle to strength training. British journal of sports medicine. 2008;42(12):989-93.
  36. Willoughby DS, Nelson MJ. Myosin heavy-chain mRNA expression after a single session of heavy-resistance exercise. Medicine & Science in Sports & Exercise. 2002;34(8):1262-9