تجزیه و تحلیل متابولومیکی عضله اسکلتی پس از تمرین تناوبی شدید در موش‌های تغذیه‌شده با رژیم غذایی پرچرب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه بیرجند، بیرجند، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران

3 مرکز تحقیقات سلولی و مولکولی غدد، پژوهشکده علوم غدد درون ریز، دانشگاه علوم پزشکی شهید بهشتی، تهران

چکیده

مقدمه و هدف: رژیم غذایی پرچرب (HFD)، باعث اختلال در مسیرهای تولید انرژی شده و احتمال بروز مقاومت به انسولین (IR) را افزایش می‌دهد. هدف از تحقیق حاضر بررسی اثر تمرین تناوبی شدید (HIIT) بر نیم‌رخ متابولیکی مرتبط با بروز IR در موش‌های نر تغذیه‌شده با HFD و رژیم غذایی استاندارد (SD) بود.
مواد و روش ها: 32 سر موش صحرایی نر (سن 8-7 هفته) به چهار گروه مساوی شامل HIIT+HFD، HIIT+SD، کنترل دریافت‌کننده HFD (HFD control) و کنترل دریافت‌کننده SD (SD control) تقسیم شدند. سپس مداخله‌هایHIIT  (12 هفته، پنج جلسه در هفته با شدت 90-85 درصد حداکثر اکسیژن مصرفی) و رژیم غذایی اعمال شد و درنهایت، عضله دوقلو به‌منظور بررسی بافتی به‌روش کروماتوگرافی گازی-طیف‌سنجی جرمی برداشته شد. آنالیز داده‌ها با استفاده از آزمون‌های آماری آنالیز واریانس یک‌طرفه، آنالیز کوواریانس یک‌طرفه و کروسکال-والیس در سطح معناداری 05/0> P  انجام شد..
نتایج: میزان اسیدسیتریک عضله دوقلو در گروه  HFD control نسبت به گروه control SD به‌طور معناداری پایین‌تر بود. علاوه‌براین، میزان اسیدسیتریک در گروه‌های HIIT+SD و HIIT+HFD نسبت به گروه HFD control به‌طور معناداری بالاتر بود. بین میزان متابولیت‌های مالات، گلوکز 6-فسفات، ریبوز، گزیلوز و ریبولوز 5-فسفات در بین گروه‌ها تفاوت معناداری مشاهده نشد. همچنین، وزن بدن در گروه‌های HIIT+SD و HIIT+HFD در مقایسه با گروه HFD control به‌طور معناداری پایین‌تر بود.
نتیجه‌گیری: HFD از طریق کاهش میزان اسیدسیتریک عضلانی به‌عنوان واسطه متابولیتی مهم چرخه TCA، در تأمین انرژی عضلات اسکلتی از مسیر هوازی محدودیت ایجاد می‌کند. انجام HIIT می‌تواند به‌واسطه افزایش میزان اسیدسیتریک و کاهش شیب افزایش وزن بدن، در کاهش اختلالات متابولیکی ناشی از HFD مؤثر واقع شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Skeletal muscle metabolomics analysis after high-intensity interval training in rats fed a high-fat diet

نویسندگان [English]

  • Mansoureh Karimi 1
  • Marziyeh Saghebjoo 1
  • Hadi Sarir 2
  • Mehdi Hedayati 3
1 Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
2 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
3 Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
چکیده [English]

Background and Objective: High-fat diet (HFD) causes disturbances in energy production pathways and increases the possibility of insulin resistance (IR). The purpose of this study was to investigate the effect of high-intensity interval training (HIIT) on metabolic profile associated with IR in male rats fed with HFD and standard diet (SD).
Materials and Methods: 32 male rats (aged 7-8 weeks) were divided into four equal groups including HIIT+HFD, HIIT+SD, HFD control, and SD control. Then, HIIT (12 weeks, five sessions per week at intensity of 85-90% of maximum oxygen consumption) and diet interventions were applied and finally, the gastrocnemius muscle was removed for tissue examination by gas chromatography-mass spectrometry. One-way analysis of variance, one-way analysis of covariance, and Kruskal-Wallis tests were used for data analysis at a significance level of P < 0.05.
Results: The level of citric acid in the gastrocnemius muscle was significantly lower in the HFD control group than in the SD control group. In addition, the level of citric acid in HIIT+SD and HIIT+HFD groups was significantly higher than in the HFD control group. There was no significant difference between the levels of malate, glucose 6-phosphate, ribose, xylose, and ribulose 5-phosphate metabolites among the groups. Also, the body weight in the HIIT+SD and HIIT+HFD groups was significantly lower than the HFD control group.
Conclusion: HFD limits the aerobic energy provision of skeletal muscles by reducing the level of muscle citric acid as an important intermediate metabolite in the TCA cycle. HIIT can be effectively reduced metabolic disorders caused by HFD by increasing the level of citric acid and reducing the slope of body weight gain.

کلیدواژه‌ها [English]

  • High-intensity interval training
  • High-fat diet
  • Citric acid
  • Pentose phosphate
  • Metabolomics
  1. Palmer ND, Stevens RD, Antinozzi PA, Anderson A, Bergman RN, Wagenknecht LE, et al. Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study. The Journal of Clinical Endocrinology & Metabolism. 2015;100(3):E463-E8.
  2. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends in Biotechnology. 2004;22(5):245-52.
  3. Hameed A, Mojsak P, Buczynska A, Suleria HAR, Kretowski A, Ciborowski M. Altered metabolome of lipids and amino acids species: a source of early signature biomarkers of T2DM. Journal of Clinical Medicine. 2020;9(7):2257.
  4. Savolainen O, Fagerberg B, Vendelbo Lind M, Sandberg A-S, Ross AB, Bergström G. Biomarkers for predicting type 2 diabetes development—Can metabolomics improve on existing biomarkers? PLoS One. 2017;12(7):e0177738.
  5. Wang‐Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, et al. Novel biomarkers for pre‐diabetes identified by metabolomics. Molecular Systems Biology. 2012;8(1):615.
  6. Goetzman ES, Gong Z, Schiff M, Wang Y, Muzumdar RH. Metabolic pathways at the crossroads of diabetes and inborn errors. Journal of Inherited Metabolic Disease. 2018;41:5-17.
  7. Kim OY, Lee JH, Sweeney G. Metabolomic profiling as a useful tool for diagnosis and treatment of chronic disease: focus on obesity, diabetes and cardiovascular diseases. Expert Review of Cardiovascular Therapy. 2013;11(1):61-8.
  8. Ge T, Yang J, Zhou S, Wang Y, Li Y, Tong X. The role of the pentose phosphate pathway in diabetes and cancer. Frontiers in Endocrinology. 2020;11:365.
  9. Gaster M, Nehlin JO, Minet AD. Impaired TCA cycle flux in mitochondria in skeletal uscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype? Archives of Physiology and Biochemistry. 2012;118(3):156-89.
  10. Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, et al. Sarcopenia, obesity, and inflammation—results from the trial of angiotensin converting enzyme inhibition and novel cardiovascular risk factors study–. The American Journal of Clinical Nutrition. 2005;82(2):428-34.
  11. Silva TJ, Barrera-Arellano D, Ribeiro APB. Margarines: Historical approach, technological aspects, nutritional profile, and global trends. Food Research International. 2021;147:110486.
  12. Baghaiee B, Karimi P, Ebrahimi K. Effects of a 12-week aerobic exercise on markers of hypertension in men. Journal of Cardiovascular and Thoracic Research. 2018;10(3):162.
  13. Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, et al. High-fat, western-style diet, systemic inflammation, and gut microbiota: a narrative review. Cells. 2021;10(11):3164.
  14. Kopp W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2019:2221-36.
  15. Dunmore SJ, Brown J. The role of adipokines in b-cell failure of type 2 diabetes. Journal of Endocrinolgy. 2013;216(1): T37-T45.
  16. García-Domínguez E, Carretero A, Viña-Almunia A, Domenech-Fernandez J, Olaso-Gonzalez G, Viña J, et al. Glucose 6-P dehydrogenase—an antioxidant enzyme with regulatory functions in skeletal muscle during exercise. Cells. 2022;11(19):3041.
  17. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. The Journal of Clinical Investigation. 2017;127(1):1-4.
  18. Ghergurovich JM, García-Cañaveras JC, Wang J, Schmidt E, Zhang Z, TeSlaa T, et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nature Chemical Biology. 2020;16(7):731-9.
  19. Schwane J, Armstrong R. Effect of training on skeletal muscle injury from downhill running in rats. Journal of Applied Physiology. 1983;55(3):969-75.
  20. Boström S, Fahlen M, Hjalmarson Å, Johansson R. Activities of rat muscle enzymes after acute exercise. Acta Physiologica Scandinavica. 1974;90(3):544-54.
  21. Katare PB, Dalmao-Fernandez A, Mengeste AM, Hamarsland H, Ellefsen S, Bakke HG, et al. Energy metabolism in skeletal muscle cells from donors with different body mass index. Frontiers in Physiology. 2022;13:982842.
  22. Liu Y, Wang Y, Ni Y, Cheung CK, Lam KS, Wang Y, et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metabolism. 2020;31(1):77-91. e5.
  23. Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver [S]. Journal of Lipid Research. 2012;53(6):1080-92.
  24. Krebs H. Rate control of the tricarboxylic acid cycle. Advances in Enzyme Regulation. 1970;8:335-53.
  25. McGarry J, Foster D. Regulation of hepatic fatty acid oxidation and ketone body production. Annual Review of Biochemistry. 1980;49(1):395-420.
  26. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin C-T, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. The Journal of Clinical Investigation. 2009;119(3):573-81.
  27. Nezamdoost Z, Saghebjoo M, Hoshyar R, Hedayati M, Keska A. High-Intensity Training and Saffron: Effects on Breast Cancer-related Gene Expression. Medicine and Science in Sports and exercise. 2020;52(7):1470-6.
  28. Akbari, A., H. Mohebbi, and E. Tabari, The effects of high fat diet-induced obesity and interval and continuse exercise training on visceral fat SIRT1 and insulin resistance in male rats. Iranian Journal of Diabetes and Lipid Disorders, 2020. 19(2): 93-102.
  29. Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. Journal of Applied Physiology. 2011;111(6):1554-60.
  30. Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Medicine and Health Science. 2019;1(1):24-32.
  31. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients. 2020;12(4):925.
  32. Khalafi M, Symonds ME. The impact of high‐intensity interval training on inflammatory markers in metabolic disorders: A meta‐ Scandinavian Journal of Medicine & Science in Sports. 2020;30(11):2020-36.
  33. Wu LH, Chang SC, Fu TC, Huang CH, Wang JS. High-intensity interval training improves mitochondrial function and suppresses thrombin generation in platelets undergoing hypoxic stress. Scientific Reports. 2017;7(1):4191.
  34. Honardoost M, Sarookhani M, Arefian E. Molecular mechanism of insulin resistance. The Journal of Qazvin University of Medical Sciences. 2014;18(5):57-64.
  35. St Aubin CR, Fisher AL, Hernandez JA, Broderick TL, Al-Nakkash L. Mitigation of MAFLD in high fat-high sucrose-fructose fed mice by a combination of genistein consumption and exercise training. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2022:2157-72.
  36. Valsdottir TD, Øvrebø B, Falck TM, Litleskare S, Johansen EI, Henriksen C, et al. Low-carbohydrate high-fat diet and exercise: Effect of a 10-week intervention on body composition and CVD risk factors in overweight and obese women—A randomized controlled trial. Nutrients. 2020;13(1):110.
  37. Pirman T, Lenardič A, Nemec Svete A, Horvat S. Supplementation with> Your< iron syrup corrects iron status in a mouse model of diet-induced iron deficiency. Biology. 2021;10(5):357.
  38. Gopalan V, Yaligar J, Michael N, Kaur K, Anantharaj R, Verma SK, et al. A 12-week aerobic exercise intervention results in improved metabolic function and lower adipose tissue and ectopic fat in high-fat diet fed rats. Bioscience Reports. 2021;41(1):BSR20201707.
  39. Delphan M, Agha Alinejad H, Delfan M, Dehghan S. Intratumoral effects of continuous endurance training and high intensity interval training on genes expression of miR-21 and bcl-2 in breast cancer bearing female mice. Iranian Journal of Breast Diseases. 2017;10(2):49-57.
  40. Groussard C, Maillard F, Vazeille E, Barnich N, Sirvent P, Otero YF, et al. Tissue-specific oxidative stress modulation by exercise: A comparison between MICT and HIIT in an obese rat model. Oxidative Medicine and Cellular longevity. 2019;2019.
  41. Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Preventive Cardiology. 2007;14(6):753-60.
  42. Maherinia H, Peeri M, Azarbayjani M, Delfan M. Aerobic exercise training combined with probiotic supplement improves antioxidant defence of cardiomyocytes by regulating Nrf2 and caspase3 gene expression in type 2 diabetic rats. Comparative Exercise Physiology. 2022;18(3):255-63.
  43. Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific Reports. 2017;7(1):204.
  44. Batista Jr M, Rosa J, Lopes R, Lira F, Martins Jr E, Yamashita A, et al. Exercise training changes IL-10/TNF-α ratio in the skeletal muscle of post-MI rats. Cytokine. 2010;49(1):102-8.
  45. Capalonga L, Karsten M, Hentschke VS, Rossato DD, Dornelles MP, Sonza A, et al. Light-emitting diode therapy (LEDT) improves functional capacity in rats with heart failure. Lasers in Medical Science. 2016;31:937-44.
  46. Zaker BSK, Saghebjoo M, Islami F. Effectiveness of high-intensity interval training and high-protein diet on TNF-α protein level in colon tissue of obese male rats: The importance of diet modifying. Obesity Medicine. 2022;31:100403.
  47. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metabolism. 2007;6(5):414-21.
  48. Farenia R, Lesmana R, Uchida K, Iwasaki T, Koibuchi N, Shimokawa N. Changes in biomarker levels and myofiber constitution in rat soleus muscle at different exercise intensities. Molecular and Cellular Biochemistry. 2019;458:79-87.
  49. Savikj M, Stocks B, Sato S, Caidahl K, Krook A, Deshmukh AS, et al. Exercise timing influences multi-tissue metabolome and skeletal muscle proteome profiles in type 2 diabetic patients–A randomized crossover trial. Metabolism. 2022;135:155268.
  50. Plaza-Díaz J, Manzano M, Ruiz-Ojeda FJ, Giron MD, Salto R, López-Pedrosa JM, et al. Intake of slow-digesting carbohydrates is related to changes in the microbiome and its functional pathways in growing rats with obesity induced by diet. Frontiers in Nutrition. 2022;9:992682.
  51. Roumans KH, Lindeboom L, Veeraiah P, Remie CM, Phielix E, Havekes B, et al. Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nature Communications. 2020;11(1):1891.
  52. Matikainen N, Adiels M, Söderlund S, Stennabb S, Ahola T, Hakkarainen A, et al. Hepatic lipogenesis and a marker of hepatic lipid oxidation, predict postprandial responses of triglyceride‐rich lipoproteins. Obesity. 2014;22(8):1854-9.
  53. Lambert JE, Ramos–Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146(3):726-35.
  54. Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metabolism. 2015;21(6):805-21.
  55. Akram M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochemistry and Biophysics. 2014;68(3):475-8.
  56. Zeng L, Luo L, Xue Q, He Q, Chen X, Meng J, et al. LC–MS based plasma metabolomics study of the intervention effect of different polar parts of Hawthorn on hyperlipidemia rats. Journal of Separation Science. 2021;44(5):963-72.
  57. Matos MAd, Vieira DV, Pinhal KC, Lopes JF, Dias-Peixoto MF, Pauli JR, et al. High-intensity interval training improves markers of oxidative metabolism in skeletal muscle of individuals with obesity and insulin resistance. Frontiers in Physiology. 2018;9:1451.
  58. Gilbert M. Role of skeletal muscle lipids in the pathogenesis of insulin resistance of obesity and type 2 diabetes. Journal of Diabetes Investigation. 2021;12(11):1934-41.
  59. Serviddio G, Bellanti F, Tamborra R, Rollo T, Capitanio N, Romano AD, et al. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia–reperfusion injury. Gut. 2008;57(7):957-65.
  60. Pataky MW, Kumar AP, Gaul DA, Moore SG, Dasari S, Robinson MM, et al. Divergent Skeletal Muscle Metabolomic Signatures of Different Exercise Training Modes Independently Predict Cardiometabolic Risk Factors. Diabetes. 2023:db230142.
  61. Zhou W, Zeng G, Lyu C, Kou F, Zhang S, Wei H. The effect of exhaustive exercise on plasma metabolic profiles of male and female rats. Journal of Sports Science & Medicine. 2019;18(2):253.
  62. Peake JM, Tan SJ, Markworth JF, Broadbent JA, Skinner TL, Cameron-Smith D. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. American Journal of Physiology-Endocrinology and Metabolism. 2014;307(7):E539-E52.
  63. Youssef L, Durand S, Aprahamian F, Lefevre D, Bourgin M, Maiuri MC, et al. Serum metabolomic adaptations following a 12-week High-Intensity Interval Training combined to citrulline supplementation in obese older adults. European Journal of Sport Science. 2023:1-13.
  1. Schranner D, Kastenmüller G, Schönfelder M, Römisch-Margl W, Wackerhage H. Metabolite concentration changes in humans after a bout of exercise: a systematic review of exercise metabolomics studies. Sports Medicine-Open. 2020;6:1-17.