تأثیر هشت هفته تمرینات تناوبی با شدت بالا (HIIT) بر سطوح mir-27a سرمی و غلظت پروتئین واکنش گر -C در مردان چاق میانسال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تربیت بدنی و علوم ورزشی، دانشگاه فنی و حرفه ای، تهران، ایران

2 گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، ایران

چکیده

مقدمه و هدف: چاقی به عنوان یک عامل خطر برای بسیاری از بیماری ها از جمله بیماری های سوخت و سازی و قلبی-عروقی شناخته می شود. از آنجایی که تأثیر تمرینات ورزشی روی میکرو RNAهای (miRNA) مرتبط با چاقی بویژه mir-27a به ندرت بررسی شده است؛  لذا، تحقیق حاضر با هدف بررسی تأثیر هشت تمرینات تناوبی با شدت بالا (HIIT) بر سطوح          mir-27a و غلظت پروتئین واکنشگر C (CRP) در مردان چاق انجام شد.
مواد و روش ها: 24 داوطلب مرد میانسال چاق (30 BMI>و دامنه سنی 40-50 سال) بصورت تصادفی به دو گروه تمرین و کنترل تقسیم شدند. گروه تمرینی هشت هفته تمرینات HIIT را بصورت دایره‌ای (زانو بلند، پروانه، بورپی، کتل بل اسنچ و اسکات گابلت)، با شدت 80-90% ضربان قلب کاروونن اجرا کردند (چهار هفته اول: سه جلسه و چهار هفته دوم: چهار جلسه در هفته). نمونه‌های خونی 48 ساعت قبل و 48 ساعت بعد از آخرین جلسه تمرینی به منظور تحلیل شاخص‌های mir-27a و CRP از آزمودنی‌ها دریافت شد. سپس، داده ها با استفاده از آزمون‌های تی مستقل و تی همبسته تجزیه و تحلیل شد.
نتایج: هشت هفته تمرین HIIT در مقایسه با گروه کنترل باعث کاهش معنی‌دار سطوح  mir-27a  وCRP شد (05/0>P).
نتیجه‌گیری: به نظر می‌رسد تمرینات ورزشی به ویژه تمرینات HIIT می تواند سبب کاهش mir-27 و CRP شده و احتمالاً با جلوگیری از التهاب ناشی از چاقی، از بروز بیماری های متابولیسمی جلوگیری نماید.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of eight weeks of high-intensity interval training (HIIT) on mir-27a levels and serum c-reactive protein (CRP) concentration in middle-aged obese men

نویسندگان [English]

  • Hamidreza Zolfi 1
  • Amir Shakib 2
  • Adel Valipour 2
1 Department of Physical Education and Sport Science, Technical and Vocational University (TVU), Tehran, Iran
2 Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
چکیده [English]

Background and Objective: Obesity is known as a hazardous factor for many diseases including cardiovascular ones. Since the effect of exercise training on microRNAs (miRNA) related to obesity, especially mir-27a, has rarely been investigated; Therefore, the current research was conducted with the aim of investigating the effect of eight high-intensity interval training (HIIT) on mir-27a levels and C-reactive protein (CRP) concentration in obese men.
Materials and Methods: A total of 24 middle-aged obese men (BMI>30 and 44.07±4 years) volunteered were randomly divided into training (n=12) and control (n=12) groups. The training group performed eight weeks of HIIT in a circuit training (High Knee Jog, Jumping jack, burpee, kettlebell snatch, and goblet squat) at an intensity of 80-90% of the Karvonen heart rate (first four weeks: three sessions per week, second four weeks: four sessions per week). Mir-27a and CRP indices were measured in blood samples taken from subjects 48 hours before and after the last training session. Then, the data were analyzed by using independent and paired t-tests.
Results: Eight weeks of HIIT training significantly reduced mir-27a and CRP levels as compared to the control group (P <0.05).
Conclusion: Doing exercise, especially HIIT training one, can apparently reduce mir-27 and CRP and possibly prevent the metabolic diseases by counteracting inflammation caused by obesity.

کلیدواژه‌ها [English]

  • High-intensity interval training (HIIT)
  • mir-27a
  • C-reactive protein (CRP)
  • Obesity
  1. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism 2019;92:6-10.
  2. Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics. 2019 May 4;14(5):421-44.
  3. Iacomino G, Siani A. Role of microRNAs in obesity and obesity-related diseases. Genes & Nutrition 2017;12(1):1-6.
  4. Ortiz-Dosal A, Rodil-García P, Salazar-Olivo LA. Circulating microRNAs in human obesity: a systematic review. Biomarkers 2019;24(6):499-509.
  5. Lee MW, Lee M, Oh KJ. Adipose tissue-derived signatures for obesity and type 2 diabetes: adipokines, batokines and microRNAs. Journal of Clinical Medicine 2019;8(6):854.
  6. Ji C, Guo X. The clinical potential of circulating microRNAs in obesity. Nature Reviews Endocrinology 2019;15(12):731-43.
  7. Ehtesham N, Shahrbanian S, Valadiathar M, Mowla SJ. Modulations of obesity-related microRNAs after exercise intervention: a systematic review and bioinformatics analysis. Molecular Biology Reports 2021;48(3):2817-31.
  8. Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nature Reviews Molecular Cell Biology 2021;22(6):425-38.
  9. Castoldi A, Naffah de Souza C, Câmara NO, Moraes-Vieira PM. The macrophage switch in obesity development. Frontiers in Immunology 2016:637.
  10. Paepegaey AC, Genser L, Bouillot JL, Oppert JM, Clément K, Poitou C. High levels of CRP in morbid obesity: the central role of adipose tissue and lessons for clinical practice before and after bariatric surgery. Surgery for Obesity and Related Diseases 2015;11(1):148-54.
  11. Improta Caria AC, Nonaka CK, Pereira CS, Soares MB, Macambira SG, Souza BS. Exercise training-induced changes in microRNAs: beneficial regulatory effects in hypertension, type 2 diabetes, and obesity. International Journal of Molecular Sciences 2018;19(11):3608.
  12. Bao F, Slusher AL, Whitehurst M, Huang CJ. Circulating microRNAs are upregulated following acute aerobic exercise in obese individuals. Physiology & Behavior 2018;197:15-21.
  13. Laursen P, Buchheit M. Science and application of high-intensity interval training. Human Kinetics 2019.
  14. Sultana RN, Sabag A, Keating SE, Johnson NA. The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: a systematic review and meta-analysis. Sports Medicine 2019;49(11):1687-721.
  15. Tsirigkakis S, Mastorakos G, Koutedakis Y, Mougios V, Nevill AM, Pafili Z, Bogdanis GC. Effects of two workload-matched high-intensity interval training protocols on regional body composition and fat oxidation in obese men. Nutrients 2021;13(4):1096.
  16. Bompa TO, Buzzichelli C. Periodization-: theory and methodology of training. Human Kinetics 2019.
  17. Bompa T, Buzzichelli C. Periodization training for sports, 3e. Human kinetics 2015.
  18. Gibson AL, Wagner D, Heyward V. Advanced Fitness Assessment and Exercise Prescription, 8E. Human Kinetics 2019.
  19. Moghaddam M, Estrada CA, Muddle TW, Magrini MA, Jenkins ND, Jacobson BH. Similar Anaerobic and Aerobic Adaptations After 2 High-Intensity Interval Training Configurations: 10: 5 s vs. 20: 10 s Work-to-Rest Ratio. The Journal of Strength & Conditioning Research 2021;35(6):1685-92.
  20. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research 2001;29(9): e45.
  21. Karczewski J, Śledzińska E, Baturo A, Jończyk I, Maleszko A, Samborski P, Begier-Krasińska B, Dobrowolska A. Obesity and inflammation. European Cytokine Network 2018;29(3):83-94.
  22. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Archives of Medical Science: AMS. 2017;13(4):851.
  23. Rodrigues KF, Pietrani NT, Bosco AA, Campos FM, Sandrim VC, Gomes KB. IL-6, TNF-α, and IL-10 levels/polymorphisms and their association with type 2 diabetes mellitus and obesity in Brazilian individuals. Archives of Endocrinology and Metabolism 2017;61:438-46.
  24. Yao F, Yu Y, Feng L, Li J, Zhang M, Lan X, Yan X, Liu Y, Guan F, Zhang M, Chen L. Adipogenic miR-27a in adipose tissue upregulates macrophage activation via inhibiting PPARγ of insulin resistance induced by high-fat diet-associated obesity. Experimental Cell Research 2017;355(2):105-12.
  25. Yu Y, Du H, Wei S, Feng L, Li J, Yao F, Zhang M, Hatch GM, Chen L. Adipocyte-derived exosomal MiR-27a induces insulin resistance in skeletal muscle through repression of PPARγ. Theranostics 2018;8(8):2171.
  26. Hubal MJ, Nadler EP, Ferrante SC, Barberio MD, Suh JH, Wang J, Dohm GL, Pories WJ, Mietus‐Snyder M, Freishtat RJ. Circulating adipocyte‐derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity 2017;25(1):102-10.
  27. Fabre O, Ingerslev LR, Garde C, Donkin I, Simar D, Barres R. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics 2018;10(08):1033-50.
  28. Du Y, Ye X, Lu A, Zhao D, Liu J, Cheng J, Yang T. Inverse relationship between serum Metrnl levels and visceral fat obesity (VFO) in patients with type 2 diabetes. Diabetes Research and Clinical Practice 2020;161:108068.
  29. McGee SL, Hargreaves M. Epigenetics and exercise. Trends in Endocrinology & Metabolism 2019;30(9):636-45.
  30. Gallardo-Escribano C, Buonaiuto V, Ruiz-Moreno MI, Vargas-Candela A, Vilches-Perez A, Benitez-Porres J, Romance-Garcia AR, Ruiz-Moreno A, Gomez-Huelgas R, Bernal-Lopez MR. Epigenetic approach in obesity: DNA methylation in a prepubertal population which underwent a lifestyle modification. Clinical Epigenetics 2020;12(1):1-4.
  31. Russo A, Bartolini D, Mensà E, Torquato P, Albertini MC, Olivieri F, Testa R, Rossi S, Piroddi M, Cruciani G, De Feo P. Physical activity modulates the overexpression of the inflammatory miR‐146a‐5p in obese patients. IUBMB Life 2018;70(10):1012-22.
  32. Manning P, Munasinghe PE, Bellae Papannarao J, Gray AR, Sutherland W, Katare R. Acute weight loss restores dysregulated circulating microRNAs in individuals who are obese. The Journal of Clinical Endocrinology & Metabolism 2019;104(4):1239-48.