طراحی یک سازه جدید واکسن مولتی اپی توپ پپتیدی علیه SARS-CoV-2 با استفاده از ابزار ایمونوانفورماتیک

نوع مقاله : مقاله پژوهشی

نویسنده

گروه بیوتکنولوژی پزشکی، دانشکده علوم نوین پزشکی، دانشگاه علوم پزشکی فسا، فسا، فارس، ایران

چکیده

مقدمه و هدف: ویروس سندرم تنفسی حاد کرونا ویروس (SARS-CoV-2) برای اولین بار در چین ظهور پیدا کرد و به سرعت در سراسر جهان منتشر شد. به دلیل شیوع گسترده آن در سراسر جهان تلاش برای ارائه واکسن موثر و ایمن علیه این ویروس ضروری می باشد. ژنوم این ویروس دارای مولکول RNA تک رشته ای می‌باشد که کدکننده چهار پروتئین ساختاری متفاوت می‌باشد، از میان آنها، پروتئین های اسپایک (S) و نوکلئوکپسید ویروس (N) نقش بسزایی در تحریک سیستم ایمنی در جهت مقابله با ویروس را دارند. واکسن های مولتی اپی توپ پپتیدی که شامل اپی توپ های ایمنی زای سلول های T و B هستند، به دلیل اختصاصیت بالا در سال های اخیر بسیار مورد توجه واقع شده اند. این واکسن ها با استفاده از ابزار ایمونوانفورماتیک طراحی می‌شوند.
مواد و روش ها: در این پژوهش پروتئین های S و N  SARS-CoV-2 با کمک سرورهای بیوانفورماتیک به منظور شناسایی اپی توپ‌های سلول های T CD4 و B آنالیز شدند. از زیر واحد B توکسین کلرا و اپی توپ PADRE به عنوان ادجوانت استفاده شد. اجزای مذکور با لینکرهای پپتیدی به هم متصل شدند و ویژگی های سازه واکسن طراحی شده از جمله آنتی ژنیسیته، عدم آلرژنیسیته، خصوصیات فیزیکی و شیمیایی، ساختار دوم و سوم با استفاده از سرورهای بیوانفورماتیک پیشگویی شد.
نتایج: براساس نتایج آنالیزهای بیوانفورماتیک سازه مذکور دارای آنتی ژنیسیته بالا بوده و آلرژن نیز نمی‌باشد.
نتیجه‌گیری: بنابراین سازه طراحی شده به عنوان یک کاندید واکسن مناسب علیه            SARS-CoV-2 می‌تواند مورد بررسی قرار گیرد، هر چند انجام مطالعات آزمایشگاهی ضروری می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing a novel multi-epitope peptide vaccine against SARS-Cov-2 using immunoinformatics tool

نویسنده [English]

  • Shirin Mahmoodi
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
چکیده [English]

Background and Objective: Acute Coronavirus Syndrome Virus (SARS-CoV-2) virus first appeared in China and spread rapidly around the world. Due to its wide spread around the world, efforts are needed to provide an effective and safe vaccine against this virus. The virus genome contains a single-stranded RNA molecule that encodes four different structural proteins, among which the virus spike (S) and nucleocapsid (N) proteins play an important role in stimulating the immune system to fight the virus. Multi-epitope peptide vaccines, which include immunogenic epitopes of T and B cells, have received much attention in recent years due to their high specificity. These vaccines were designed using immunoinformatics tools.
Materials and Methods: In this study, the S and N proteins of SARS-CoV-2 were analyzed with the help of bioinformatics servers to identify CD4 and B T cell epitopes. Cholera toxin B subunit and PADRE epitope were used as adjuvants. The components were linked together by peptide linkers and the structural features of the vaccine were predicted, including antigenicity, non-allergenicity, physicochemical properties, secondary and tertiary structures using bioinformatics servers.
Results: According to the results of bioinformatics analysis, the structure has high antigenicity and is not allergenic.
Conclusion: Therefore, the designed structure as a suitable vaccine candidate against SARS-CoV-2 can be examined, although experimental studies are necessary.

کلیدواژه‌ها [English]

  • Acute coronavirus respiratory syndrome virus
  • Vaccine
  • Immunoinformatics
  • Spike
  • Nucleocapsid
  1. Wibawa T. COVID‐19 vaccine research and development: ethical issues. Tropical Medicine & International Health 2021;26(1):14-9.
  2. Su S, Du L, Jiang S. Learning from the past: development of safe and effective COVID-19 vaccines. Nature Reviews Microbiology 2021;19(3):211-9.
  3. Sharma O, Sultan AA, Ding H, Triggle CR. A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Frontiers in Immunology 2020;11:2413.
  4. Singh S, Singh R, Singh K, Singh V, Malik Y, Kamdi B, et al. Immunohistochemical and molecular detection of natural cases of bovine rotavirus and coronavirus infection causing enteritis in dairy calves. Microbial Pathogenesis 2020;138:103814.
  5. Shen M, Zhou Y, Ye J, Al-Maskri AAA, Kang Y, Zeng S, et al. Recent advances and perspectives of nucleic acid detection for coronavirus. Journal of Pharmaceutical Analysis 2020;10(2):97-101.
  6. Muhammad S, Long X, Salman M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Science of the total environment. 2020;728:138820.
  7. He J, Tao H, Yan Y, Huang S-Y, Xiao Y. Molecular mechanism of evolution and human infection with SARS-CoV-2. Viruses 2020;12(4):428.
  8. Das O, Neisiany RE, Capezza AJ, Hedenqvist MS, Försth M, Xu Q, et al. The need for fully bio-based facemasks to counter coronavirus outbreaks: A perspective. Science of the Total Environment 2020;736:139611.
  9. Saadat S, Rawtani D, Hussain CM. Environmental perspective of COVID-19. Science of the Total Environment 2020;728:138870.
  10. Velavan TP, Meyer CG. The COVID‐19 epidemic. Tropical Medicine & International Health 2020;25(3):278.
  11. Heller L, Mota CR, Greco DB. COVID-19 faecal-oral transmission: Are we asking the right questions? Science of the Total Environment 2020;729:138919.
  12. Mohammed M, Syamsudin H, Al-Zubaidi S, AKS RR, Yusuf E. Novel COVID-19 detection and diagnosis system using IOT based smart helmet. International Journal of Psychosocial Rehabilitation 2020;24(7):2296-303.
  13. Horowitz RI, Freeman PR. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials. Medical Hypotheses 2020;143:109851.
  14. Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatric Respiratory Reviews 2020;35:43-9.
  15. McIntosh K, Hirsch M, Bloom A. Coronavirus disease 2019 (COVID-19): Epidemiology, virology, and prevention. Lancet Infectious Diseases 2020;1:2019-20.
  16. Scarabel L, Guardascione M, Dal Bo M, Toffoli G. Pharmacological strategies to prevent SARS-CoV-2 infection and to treat the early phases of COVID-19 disease. International Journal of Infectious Diseases 2021.
  17. Stratmann T. Cholera toxin subunit B as adjuvant––an accelerator in protective immunity and a break in autoimmunity. Vaccines 2015;3(3):579-96.
  18. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 2020;395(10224):565-74.
  19. Rueckert C, Guzmán CA. Vaccines: from empirical development to rational design. PLoS Pathogens 2012;8(11):e1003001.
  20. Sanami S, Zandi M, Pourhossein B, Mobini G-R, Safaei M, Abed A, et al. Design of a multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach. International Journal of Biological Macromolecules 2020;164:871-83.
  21. Naz A, Shahid F, Butt TT, Awan FM, Ali A, Malik A. Designing multi-epitope vaccines to combat emerging coronavirus disease 2019 (COVID-19) by employing immuno-informatics approach. Frontiers in Immunology 2020;11:1663.
  22. Kumar J, Qureshi R, Sagurthi SR, Qureshi IA. Designing of nucleocapsid protein based novel multi-epitope vaccine against SARS-COV-2 using immunoinformatics approach. International Journal of Peptide Research and Therapeutics 2021;27(2):941-56.
  23. McBride R, Van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses 2014;6(8):2991-3018.
  24. Alexander J, Fikes J, Hoffman S, Franke E, Sacci J, Appella E, et al. The optimization of helper T lymphocyte (HTL) function in vaccine development. Immunologic Research 1998;18(2):79-92.
  25. Panina‐Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A. Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. European Journal of Immunology 1989;19(12):2237-42.
  26. Del Guercio M-F, Alexander J, Kubo RT, Arrhenius T, Maewal A, Appella E, et al. Potent immunogenic short linear peptide constructs composed of B cell epitopes and Pan DR T helper epitopes (PADRE) for antibody responses in vivo. Vaccine 1997;15(4):441-8.
  27. Safavi A, Kefayat A, Mahdevar E, Abiri A, Ghahremani F. Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine 2020;38(48):7612-28.
  28. Consortium U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research 2019;47(D1):D506-D15.
  29. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The immune epitope database (IEDB): 2018 update. Nucleic Acids Research 2019;47(D1):D339-D43.
  30. Saha S, Raghava GPS. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics 2006;65(1):40-8.
  31. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research 2017;45(W1):W24-W9.
  32. Magnan CN, Zeller M, Kayala MA, Vigil A, Randall A, Felgner PL, et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 2010;26(23):2936-43.
  33. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007;8(1):1-7.
  34. Saha S, Raghava G. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research 2006;34(suppl_2):W202-W9.
  35. Patra P, Bhattacharya M, Sharma AR, Ghosh P, Sharma G, Patra BC, et al. Identification and design of a next-generation multi epitopes bases peptide vaccine candidate against prostate cancer: an in silico approach. Cell Biochemistry and Biophysics 2020;78(4):495-509.
  36. Magnan CN, Randall A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics 2009;25(17):2200-7.
  37. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook 2005:571-607.
  38. Deléage G. ALIGNSEC: viewing protein secondary structure predictions within large multiple sequence alignments. Bioinformatics 2017.
  39. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nature Methods 2015;12(1):7-8.
  40. Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research 2005;33(suppl_2):W526-W31.
  41. Ahmad S, Navid A, Farid R, Abbas G, Ahmad F, Zaman N, et al. Design of a novel multi epitope-based vaccine for pandemic coronavirus disease (COVID-19) by vaccinomics and probable prevention strategy against avenging zoonotics. European Journal of Pharmaceutical Sciences 2020;151:105387.
  42. Yamaoka Y, Miyakawa K, Jeremiah SS, Funabashi R, Okudela K, Kikuchi S, et al. Highly specific monoclonal antibodies and epitope identification against SARS-CoV-2 nucleocapsid protein for antigen detection tests. Cell Reports Medicine 2021;2(6):100311.
  43. Farhani I, Nezafat N, Mahmoodi S. Designing a novel multi-epitope peptide vaccine against pathogenic Shigella spp. based immunoinformatics approaches. International Journal of Peptide Research and Therapeutics 2019;25(2):541-53.
  44. Ayyagari VS, TC V, Srirama K. Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: an immunoinformatics approach. Journal of Biomolecular Structure and Dynamics 2020:1-15.
  45. Yazdani Z, Rafiei A, Yazdani M, Valadan R. Design an efficient multi-epitope peptide vaccine candidate against SARS-CoV-2: An in silico analysis. Infection and Drug Resistance 2020;13:3007.
  46. Rosa DS, Tzelepis F, Cunha MG, Soares IS, Rodrigues MM. The pan HLA DR-binding epitope improves adjuvant-assisted immunization with a recombinant protein containing a malaria vaccine candidate. Immunology Letters 2004;92(3):259-68.
  47. Rahman N, Ali F, Basharat Z, Shehroz M, Khan MK, Jeandet P, et al. Vaccine design from the ensemble of surface glycoprotein epitopes of SARS-CoV-2: an immunoinformatics approach. Vaccines 2020;8(3):423.
  48. Heggestad JT, Kinnamon DS, Olson LB, Liu J, Kelly G, Wall SA, et al. Multiplexed, quantitative serological profiling of COVID-19 from blood by a point-of-care test. Science Advances 2021;7(26):eabg4901.
  49. Zhang B-z, Hu Y-f, Chen L-l, Yau T, Tong Y-g, Hu J-c, et al. Mining of epitopes on spike protein of SARS-CoV-2 from COVID-19 patients. Cell Research 2020;30(8):702-4.
  50. Li Y, Lai D-y, Zhang H-n, Jiang H-w, Tian X, Ma M-l, et al. Linear epitopes of SARS-CoV-2 spike protein elicit neutralizing antibodies in COVID-19 patients. Cellular & Molecular Immunology 2020;17(10):1095-7