تأثیر ۸ هفته تمرین استقامتی بر سیستم آنتی‌اکسیدانی گلوتاتیون و مالون دی آلدئید در موش‌های بزرگ آزمایشگاهی مبتلا به آرتریت روماتوئید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی و آسیب شناسی ورزشی، دانشکده علوم ورزشی،دانشگاه اراک، اراک، ایران

2 گروه فیزیولوژی، دانشکده علوم پایه،دانشگاه آزاد اراک، اراک، ایران

چکیده

مقدمه و هدف: افزایش تولید رادیکال‌های آزاد در مفاصل ملتهب و اختلال در سیستم آنتی‌اکسیدانی در آرتریت روماتوئید (RA) نقش دارد. شواهد نشان می‌دهد تمرین ورزشی موجب بهبود علایم آرتریت روماتوئید می‌شود، هر چند مکانیزم آن به خوبی روشن نیست. هدف از این مطالعه بررسی تأثیر تمرین استقامتی بر روی سیستم آنتی اکسیدانی گلوتاتیون و تغییرات اکسیداتیو ناشی از آرتریت روماتوئید در موش‌های بزرگ آزمایشگاهی بود.
مواد و روش ها: در این مطالعه تجربی ۳۰ سر موش بزرگ آزمایشگاهی از نژاد ویستار با میانگین ۲۰۰ تا ۲۵۰ گرم به طور تصادفی در ۳ گروه کنترل سالم (C)، گروه کنترل آرتریت روماتوئیدی (RA+C) و گروه آرتریت روماتوئیدی همراه با تمرین استقامتی (RA+EX) قرار گرفتند (۱۰=n). گروه‌های تمرینی برنامه تمرین را به مدت ۸ هفته اجرا کردند. داده‌ها با استفاده از آزمون آنالیز واریانس یک طرفه و آزمون تعقیبی توکی، درسطح معناداری 05/0 بررسی شدند.
نتایج: نتایج نشان داد، آرتریت روماتوئید به طور معنی‌دار سطح مالون دی آلدئید را افزایش داد و تمرینات استقامتی از این پاسخ جلوگیری کرد (05/0>P). همچنین، گلوتاتیون پراکسیداز و گلوتاتیون ردوکتاز در گروه RA+C به طور معنی‌دار در مقایسه با گروه RA+EX و C کاهش یافت (05/0>P). علاوه بر این، شدت علایم بالینی آرتریت روماتوئید در گروه RA+EX به طور معنی دار کمتر از گروه  RA+C بود (05/0>P).
نتیجه‌گیری: یافته‌های ما نشان می‌دهد که تمرین استقامتی ممکن است در جلوگیری از تغییرات منفی در سیستم آنتی اکسیدانی گلوتاتیون و شاخص‌های استرس اکسیداتیو مربوط به آرتریت روماتوئید مفید باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of 8 weeks of endurance training on the antioxidant system of glutathione and malondialdehyde in rats with rheumatoid arthritis

نویسندگان [English]

  • Abbas Saremi 1
  • Reyhanh Norouzi 1
  • Mohamad Parastesh 1
  • Zahra Yousefvand 1
  • Saeed Tahmasebi 2
1 Department of Sport Physiology, Faculty of Sport Sciences, Arak University, Arak, Iran
2 Department of Physiology, Faculty of Basic Sciences, Arak Azad University, Arak, Iran
چکیده [English]

Background and Objective: Elevated free radical generation in inflamed joints and impaired antioxidant system has been implicated in rheumatoid arthritis (RA). Evidence suggests that exercise improves the symptoms of rheumatoid arthritis, although the mechanism is not well understood. The aim of this study was to investigate the effect of endurance training on the glutathione antioxidant system and oxidative changes induced by rheumatoid arthritis in rats.
Materials and Methods: In this study, 30 Wistar laboratory rats with an average weight of 200-250 grams were randomly assigned into three groups: healthy control group(C), arthritis control (RA+C) and arthritis and endurance training group (RA+EX)(n=10). The training groups had trained the exercise program for 8 weeks by treadmill. Data were analyzed using one-way ANOVA and Tukey post-hoc test at a significance level of 0.05.
Results: The results showed, levels of malondialdehyde increased  by rheumatoid arthritis significantly, and endurance training prevented this response (P<0.05). Also, glutathione peroxidase and glutathione reductase were significantly decreased in the RA+C group compared to the RA+EX and C groups (P<0.05). In addition, the severity of rheumatoid arthritis clinical signs in RA+EX group was significantly lower than RA+C group (P<0.05).
Conclusion: Our findings suggest that endurance training may be useful in preventing the negative changes in glutathione antioxidant system and oxidative stress parameters related to rheumatoid arthritis.

کلیدواژه‌ها [English]

  • Rheumatoid arthritis
  • Endurance training
  • Malondialdehyde
  • Glutathione
  1. Wiegertjes R, Loo F A van de, Blaney Davidson E N B. A roadmap to target interleukin-6 in osteoarthritis. Rheumatology 2020; 59(10):2681-2694.
  2. Mateen S, Moin  Sh , Qayyum Khan A, Zafar  A, Fatima N.  Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PloS One 2016; 11(4):e0152925.
  3. Brzustewicz E, Henc I, Daca A, Szarecka M, Sochocka-Bykowska M, Witkowski J, et al. Autoantibodies, C-reactive protein, erythrocyte sedimentation rate and serum cytokine profiling in monitoring of early treatment. Central-European Journal of Immunology 2017; 42(3):259.
  4. Vincent Wai-Sun W, Grace Lai-Hung W, Steven Woon-Choy T, Tina F, Winnie Chiu-Wing Ch, Jean W, et al. High prevalence of colorectal neoplasm in patients with non-alcoholic steatohepatitis. Gut 2011; 60(6):829-836.
  5. Wong VWS, WongGLH, Tsang SWC, Fan TChu WCW, Woo J, et al. High prevalence of colorectal neoplasm in patients with non-alcoholic steatohepatitis. Gut 2011; 60(6): 829-836.
  6. Thomaz LDGR, Lucena RDLD, Geist JGB, Schwartsmann CR, Freitas GLSD, Spinelli LDF, et al. Answer to the Letter to the Editor Regarding the Article “Radiological Evaluation of Postoperative Alignment in Total Knee Arthroplasty”. Revista Brasileira de Ortopedia 2021; 56(6):821.
  7. Jahan Tigh M, Abtahi Froshani SM, Afzal Ahangaran N. Effect of mesenchymal stem cells treated with 17β-estradiol on the pattern of intrinsic immunity responses in collagen-induced rheumatoid arthritis in wistar Rats. Armaghane Danesh 2018; 23(1):42-56.
  8. Hejazi J, Mohtadinia J, Kolahi S, Bakhtiyari M, Delpisheh A. Nutritional status of Iranian women with rheumatoid arthritis: an assessment of dietary intake and disease activity. Women’s Health 2011; 7(5):599-605.
  9. Choudhary N, Bhatt LK, Prabhavalkar KS. Experimental animal models for rheumatoid arthritis. Immunopharmacology and immunotoxicology 2018; 40(3):193-200.
  10. Stirban AO, Tschoepe D. Cardiovascular complications in diabetes: targets and interventions. Diabetes Care 2008; 31(Supplement_2): S215-S221.
  11. Fisher G, Schwartz DD, Quindry J, Barberio MD, Foster EB, Jones KW, et al. Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. Journal of Applied Physiology 2011; 110(3):730-737.
  12. Singh Z, Karthigesu IP, Singh P, Rupinder KAUR. Use of malondialdehyde as a biomarker for assessing oxidative stress in different disease pathologies: a review. Iranian Journal of Public Health 2014; 43(Supple 3):7-16.
  13. Garaj-Vrhovac V, Gajski G, Pažanin S, Šarolić A, Domijan AM, Flajs D, et al. Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment. International Journal of Hygiene and Environmental Health 2011; 214(1): 59-65.
  14. Link MS, Luttmann-Gibson H, Schwartz J, Mittleman MA, Wessler B, Gold DR, et al. Acute exposure to air pollution triggers atrial fibrillation. Journal of the American College of Cardiology 2013; 62(9):816-825.
  15. Kadry MO. Liposomal glutathione as a promising candidate for immunological rheumatoid arthritis therapy. Heliyon 2019; 5(7): e02162.
  16. Kucharski D, Lange E, Ross AB, Svedlund S, Feldthusen C, Önnheim, et al. Effects of aerobic and resistance exercise in older adults with rheumatoid arthritis: a randomized controlled trial. Arthritis Care & Research 2019; 71(1): 61-70.
  17. Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp M P, Hyatt H, et al. Exercise-induced oxidative stress: friend or foe? Journal of sport and health science 2020; 9(5): 415-425.
  18. Ahmadiasl N, Najafipour H, Soufi FG, Jafari A. Effect of short-and long-term strength exercise on cardiac oxidative stress and performance in rat. Journal of Physiology and Biochemistry 2012; 68(1):121-128.
  19. Pepe H. The effects of gender and exercise on malondialdehyde, nitric oxide and total glutathione levels in rat liver. African Journal of Pharmacy and Pharmacology 2011; 5(4):515-521.
  20. Saritaş N, Uyanik F, Hamurcu Z, Çoksevim B. Effects of acute twelve minute run test on oxidative stress and antioxidant enzyme activities. African Journal of Pharmacy and Pharmacology 2011; 5(9).
  21. Galois L, Etienne S, Grossin L, Watrin-Pinzano. A Dose–response relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study. Osteoarthritis and Cartilage 2004; 12(10): 779-786.
  22. Cifuentes DJ, Rocha LG, Silva LA, Brito AC, Rueff-Barroso CR, Porto L C, et al. Decrease in oxidative stress and histological changes induced by physical exercise calibrated in rats with osteoarthritis induced by monosodium iodoacetate. Osteoarthritis and Cartilage 2010; 18(8):1088-1095.
  23. Cifuentes DJ, Rocha LG, Silva LA, Brito AC, Rueff-Barroso CR, Porto LC, et al.Three months of moderate-intensity exercise reduced plasma 3-nitrotyrosine in rheumatoid arthritis patients. European Journal of Applied Physiology 2014; 114(7):1483-1492.
  24. Bendele A. Animal models of rheumatoid arthritis. Journal of Musculoskeletal and Neuronal Interactions 2001; 1(4): 377-85.
  25. Afzalpour M E, Chadorneshin HT, Foadoddini M, Eivari HA. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiology & Behavior 2015; 147:78-83.
  26. Fischer BD, Adeyemo A, O’Leary ME, Bottaro A. Animal models of rheumatoid pain: experimental systems and insights. Arthritis Research & Therapy 2017; 19(1):1-9.
  27. White J, Wright V, Hudson A. Relationships between habitual physical activity and osteoarthrosis in ageing women. Public Health 1993; 107(6): 459-470.
  28. Leonavičienė L, Bradūnaitė R, Vaitkienė D, Vasiliauskas A, Keturkienė A. Collagen-induced arthritis and pro-/antioxidant status in Wistar and Lewis rats. Biologija 2008(4).
  29. Nonato LF, Rocha-Vieira E, Tossige-Gomes R, Soares AA, Soares BA, Freitas DA, et al. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 2016. 49, e5310 DOI: 10.1590/1414-431x20165310.
  30. Tuna Z, Duger T, Atalay-Guzel N, Aral A Basturk B, Haznedaroglu S, et al.  Aerobic exercise improves oxidant-antioxidant balance in patients with rheumatoid arthritis. Journal of physical therapy science  2015; 27(4): 1239-1242.
  31. Dos Santos SA, Dos Santos Vieira MA, Simões MCB, Serra AJ, Leal-Junior EC, de Carvalho PTC, et al. Photobiomodulation therapy associated with treadmill training in the oxidative stress in a collagen-induced arthritis model. Lasers in Medical Science 2017; 32(5):1071-1079.
  32. Dos Santos SA, Dos Santos Vieira M A, Simões MCB, Serra AJ. Fangchinoline supplementation attenuates inflammatory markers in experimental rheumatoid arthritis-induced rats. Biomedicine & Pharmacotherapy 2019; 111:142-150.
  33. Sindhu G, Ratheesh M, Shyni GL, Nambisan B, Helen A. Anti-inflammatory and antioxidative effects of mucilage of Trigonella foenum graecum (Fenugreek) on adjuvant induced arthritic rats. International Immunopharmacology 2012; 12(1):205-211.
  34. Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. The Lancet 2017; 389(10086):2338-2348.
  35. Powers SK, Radak Z, Ji Exercise‐induced oxidative stress: past, present and future. The Journal of Physiology 2016; 594(18):5081-5092.
  36. Azizbeigi KR, Amirsasan R, Atashak S. The Effect of Two Resistance Training Protocols on Lipid Peroxidation and Plasma Total Antioxidant Capacity Changes in Healthy Men. Journal of Sport Biosciences 2014; 6(3): 245-257.
  37. Sadegh Ghomi M, Kashef M, Shahidi F, Salehpour M, Javadieh M, Noroozi Nia M J. Comparison of the effect of eight-week training in water, resistance ladder and endurance running on catalase, malondialdehyde, vaspin and insulin resistance in male rats. Daneshvar Medicine 2022; 29(6): 58-69.
  38. Okudan N, Belviranli M. Effects of exercise training on hepatic oxidative stress and antioxidant status in aged rats. Archives of Physiology and Biochemistry 2016;122(4):180-185.
  39. Bloomer RJ, Goldfarb AH, McKenzie Oxidative stress response to aerobic exercise: comparison of antioxidant supplements. Medicine & Science in Sports & Exercise 2006; 38(6):1098-1105.
  40. Seifi-Skishahr F, Siahkohian M, Nakhostin-Roohi B. Influence of aerobic exercise at high and moderate intensities on lipid peroxidation in untrained men. Journal of Sports Medicine and Physical Fitness 2008; 48(4):515.
  41. Close GL, Ashton T, Cable T, Doran, D, MacLaren DP. Eccentric exercise, isokinetic muscle torque and delayed onset muscle soreness: the role of reactive oxygen species. European Journal of Applied Physiology 2004; 91(5): 615-621.
  42. Goldfarb AH, McKenzie MJ, Bloomer RJ. Gender comparisons of exercise-induced oxidative stress: influence of antioxidant supplementation. Applied Physiology, Nutrition, and Metabolism 2007;32(6): 1124-1131.
  43. Madhok R, Capell HA. Outstanding issues in use of disease-modifying agents in rheumatoid arthritis. Lancet (London, England) 1999; 353(9149): 257-258.
  44. Möttönen T, Hannonen P, Korpela M, Nissilä M, Kautiainen H, Ilonen J, et al. Delay to institution of therapy and induction of remission using single-drug or combination-disease-modifying antirheumatic drug therapy in early rheumatoid arthritis. Arthritis Rheum 2002; 46(4):894-8.
  45. Behzadian M, Otaghsara SK, Yazdani M, Ignatius J. A state-of the-art survey of TOPSIS applications. Expert Systems with Applications 2012; 39(17):13051-13069.
  46. Frasier CR, Sloan RC, Bostian PA, Gonzon MD, Kurowicki J, LoPresto SJ, et al. Short-term exercise preserves myocardial glutathione and decreases arrhythmias after thiol oxidation and ischemia in isolated rat hearts. Journal of Applied Physiology 2011; 111(6): 1751-1759.
  47. Silveira LS, Antunes BDMM, Minari ALA, Dos Santos RVT, Neto JCR, Lira FS. Macrophage polarization: implications on metabolic diseases and the role of exercise. Critical Reviews™ in Eukaryotic Gene Expression 2016; 26(2).