اثر فعالیت ورزشی هوازی و مکمل اسپیرولینا بر پپتیدهای مشتق از میتوکندری در مردان مسن دارای اضافه وزن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیولوژی ورزشی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

چکیده

مقدمه و هدف: پپتیدهای مشتق از میتوکندری (MDPs) هیومنین (HN) و MOTS-c در بقای سلولی، سرکوب آپوپتوز و متابولیسم نقش دارند. هدف از این مطالعه بررسی تأثیر تمرین هوازی (AT) همراه با مکمل اسپیرولینا (SP) بر MDPs در مردان مسن دارای اضافه وزن بود.
مواد و روش ها: در این مطالعه کارآزمایی بالینی، 40 نفر مرد مسن دارای اضافه وزن شهر انزلی انتخاب (سن 84/4±50/57 سال، شاخص توده‌بدنی 85/2±90/26 کیلوگرم بر متر مربع) و به طور تصادفی به پنج گروه کنترل-سالم (CN)، اضافه‌وزن (Obe)، اضافه‌وزن-تمرین (ObeAT)، اضافه‌وزن-اسپیرولینا (ObeSP) و اضافه‌وزن-تمرین-اسپیرولینا (ObeATSP) تقسیم شدند. گروه‌های تمرین به مدت هشت هفته، هر هفته پنج جلسه در برنامه تمرینی هوازی (با شدت 65 تا 85 درصد حداکثر ضربان قلب، 40 دقیقه) شرکت کردند. به گروه‌های ObeSP و ObeATSP روزانه 2 عدد قرص 500 میلی‌گرمی SP در صبح و عصر داده شد. داده‌ها با استفاده از آزمون t همبسته و تحلیل کوواریانس در سطح معنی‌داری 05/0<p آزمون شد.
نتایج: نشان داده شده که AT و SP باعث افزایش HM (026/0P= و 046/0P=) و MOTS-c (005/0P= و 018/0P=) شد. همچنین مداخله همزمان AT و SP، اثر مثبت و تقویتی بر افزایش افزایش HM (0001/0P=) و MOTS-c (0001/0P=) داشت. نیمرخ چربی نیز به دنبال AT و مصرف SP بهبود یافت (05/0 p<).
نتیجه‌گیری: AT و SP با تاثیر بر سطوح سرمی HM و MOTS-c و همچنین نیمرخ چربی باعث بهبود عملکرد میتوکندری شده و وضعیت متابولیکی را در مردان دارای اضافه وزن بهبود می‌بخشد. با وجود این، اثر ترکیب تمرین و مکمل بیشتر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of aerobic training and spirulina supplementation on mitochondrial-derived peptides in overweight elderly men

نویسندگان [English]

  • Ammar Raoufi Sangachin
  • Ahmad Abdi
  • Alireza Barari
Department of Physical Education and Sport Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
چکیده [English]

Background and Objective: Mitochondrial-derived peptides (MDPs) humanin (HN) and MOTS-c are involved in cell survival, suppression of apoptosis, and metabolism. The aim of this study was to evaluate the effect of aerobic exercise (AT) with Spirulina supplementation (SP) on MDPs in overweight elderly men.
Materials and Methods: In this clinical trial study, 40 overweight elderly men (age 57.50±4.84 years, BMI 26.90±2.85 kg/square meters) were selected from Anzali and were randomly divided into five groups Control-Normal (CN), Overweight (Obe), Overweight-Aerobic Training (ObeAT), Overweight-Spirulina (ObeSP) and Overweight-Aerobic Training-Spirulina (ObeATSP). Training groups participated in an aerobic exercise program for eight weeks, five sessions per week (with an intensity of 65 to 85% of maximum heart rate, 40 minutes). The groups of ObeSP and ObeATSP were provided two 500 mg SP tablets daily in the morning and evening. Data were tested using dependent t-test and analysis of covariance at a significance level of p<0.05.
Results: It was shown that AT and SP increased HM (P=0.026 and P=0.046) and MOTS-c (P=0.005 and P=0.018). Simultaneous intervention of AT and SP also had a positive and strengthening effect on increasing HM (P=0.00001) and MOTS-c (P=0.0001). Fat profile also improved following AT and SP consumption (p<0.05).
Conclusion: AT and SP improve mitochondrial function by improving serum HM and MOTS-c levels as well as fat profile and improve metabolic status in overweight men. Nevertheless, the effect of the combination of exercise and supplementation was greater.

کلیدواژه‌ها [English]

  • Exercise
  • Spirulina
  • Humanin
  • MOTS-c
  • Overweight
  1. Mottis A, Herzig S, Auwerx J. Mitocellular communication: Shaping health and disease. Science 2019 ;366(6467):827-32. doi: 10.1126/science.aax3768
  2. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Molecular Cell 2016;61(5):654-66. doi: 10.1016/j.molcel.2016.01.028
  3. Siasos G, Tsigkou V, Kosmopoulos M, Theodosiadis D, Simantiris S, Tagkou NM, et al. Mitochondria and cardiovascular diseases—from pathophysiology to treatment. Nnals of Translational Medicine 2018;6(12):256. doi: 10.21037/atm.2018.06.21
  4. Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides? Trends in Endocrinology & Metabolism 2013;24(5):222-8. doi: 10.1016/j.tem.2013.01.005
  5. Kim KH, Son JM, Benayoun BA, Lee C. The mitochondrial-encoded peptide MOTS-c translocates to the nucleus to regulate nuclear gene expression in response to metabolic stress. Cell Metabolism 2018;28(3):516-24. e7. doi: 10.1016/j.cmet.2018.06.008.
  6. Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell metabolism 2015;21(3):443-54. doi: 10.1016/j.cmet.2015.02.009.
  7. Muzumdar RH, Huffman DM, Atzmon G, Buettner C, Cobb LJ, Fishman S, et al. Humanin: a novel central regulator of peripheral insulin action. PloS one 2009;4(7):e6334. doi: 10.1371/journal.pone.0006334.
  8. Nashine S, Kenney MC. Effects of mitochondrial-derived peptides (MDPs) on mitochondrial and cellular health in AMD. Cells 2020;9(5):1102. doi: 10.3390/cells9051102.
  9. Hoang PT, Park P, Cobb LJ, Paharkova-Vatchkova V, Hakimi M, Cohen P, et al. The neurosurvival factor Humanin inhibits β-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice. Metabolism 2010;59(3):343-9. doi: 10.1016/j.metabol.2009.08.001.
  10. Cobb LJ, Lee C, Xiao J, Yen K, Wong RG, Nakamura HK, et al. Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging 2016;8(4):796. doi: 10.18632/aging.100943.
  11. Reynolds JC, Lai RW, Woodhead JS, Joly JH, Mitchell CJ, Cameron-Smith D, et al. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nature Communications 2021;12(1):1-11.doi: 10.1038/s41467-020-20790-0.
  12. Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, et al. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Aβ. Proceedings of the National Academy of Sciences 2001;98(11):6336-41. doi: 10.1073/pnas.101133498.
  13. Ikonen M, Liu B, Hashimoto Y, Ma L, Lee K-W, Niikura T, et al. Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proceedings of the National Academy of Sciences 2003;100(22):13042-7. doi: 10.1073/pnas.2135111100.
  14. Kuliawat R, Klein L, Gong Z, Nicoletta‐Gentile M, Nemkal A, Cui L, et al. Potent humanin analog increases glucose‐stimulated insulin secretion through enhanced metabolism in the β The FASEB Journal 2013;27(12):4890-8. doi: 10.1096/fj.13-231092.
  15. Gong Z, Su K, Cui L, Tas E, Zhang T, Dong HH, et al. Central effects of humanin on hepatic triglyceride secretion. American Journal of Physiology-Endocrinology and Metabolism 2015;309(3):E283-E92. doi: 10.1152/ajpendo.00043.2015.
  16. Kim S-J, Mehta HH, Wan J, Kuehnemann C, Chen J, Hu J-F, et al. Mitochondrial peptides modulate mitochondrial function during cellular senescence. Aging 2018;10(6):1239. doi: 10.18632/aging.101463.
  17. Gidlund EK, von Walden F, Venojärvi M, Risérus U, Heinonen OJ, Norrbom J, et al. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism. Physiological Reports 2016;4(23):e13063. doi: 10.14814/phy2.13063.
  18. Al-Dhabi NA, Valan Arasu M. Quantification of phytochemicals from commercial Spirulina products and their antioxidant activities. Evidence-Based Complementary and Alternative Medicine 2016;2016:7631864. doi: 10.1155/2016/7631864.
  19. Pak W, Takayama F, Mine M, Nakamoto K, Kodo Y, Mankura M, et al. Anti-oxidative and anti-inflammatory effects of spirulina on rat model of non-alcoholic steatohepatitis. Journal of Clinical Biochemistry and Nutrition 2012;51(3):227-34. doi: 10.3164/jcbn.12-18.
  20. Villareal DT, Aguirre L, Gurney AB, Waters DL, Sinacore DR, Colombo E, et al. Aerobic or resistance exercise, or both, in dieting obese older adults. New England Journal of Medicine 2017;376(20):1943-55. doi: 10.1056/NEJMoa1616338.
  21. Eskandari M, Pournemati P, Hooshmand Moghadam B, norouzi j. The Interactive Effect of Aerobic Exercise and Supplementation of Blue-Algae (Spirulina) on Anthropometric Indexes and Cardiovascular Risk Factors in Diabetic Men. Sadra Medical Journal 2019;8(1):51-62. doi:10.30476/SMSJ.2020.83630.1068.
  22. Dieli-Conwright CM, Sami N, Norris MK, Wan J, Kumagai H, Kim S-J, et al. Effect of aerobic and resistance exercise on the mitochondrial peptide MOTS-c in Hispanic and Non-Hispanic White breast cancer survivors. Scientific Reports 2021;11(1):1-7. doi: 10.1038/s41598-021-96419-z.
  23. Guo Q, Chang B, Yu Q-l, Xu S-t, Yi X-j, Cao S-c. Adiponectin treatment improves insulin resistance in mice by regulating the expression of the mitochondrial-derived peptide MOTS-c and its response to exercise via APPL1–SIRT1–PGC-1α. Diabetologia 2020;63(12):2675-88. doi: 10.1007/s00125-020-05269-3.
  24. Yang B, Yu Q, Chang B, Guo Q, Xu S, Yi X, et al. MOTS-c interacts synergistically with exercise intervention to regulate PGC-1α expression, attenuate insulin resistance and enhance glucose metabolism in mice via AMPK signaling pathway. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2021;1867(6):166126. doi: 10.1016/j.bbadis.2021.166126.
  25. Woodhead JS, D’Souza RF, Hedges CP, Wan J, Berridge MV, Cameron-Smith D, et al. High-intensity interval exercise increases humanin, a mitochondrialencoded peptide, in the plasma and muscle of men. Journal of Applied Physiology 2020;128(5):1346-54. doi: 10.1152/japplphysiol.00032.2020.
  26. Woodhead JS, Merry TL. Mitochondrial-derived peptides and exercise. Biochimica et Biophysica Acta (BBA)-General Subjects 2021;1865(12):130011. doi: 10.1016/j.bbagen.2021.130011.
  27. Crimmins EM. Lifespan and healthspan: past, present, and promise. The Gerontologist 2015;55(6):901-11. doi: 10.1093/geront/gnv130.
  28. Heo M-G, Choung S-Y. Anti-obesity effects of Spirulina maxima in high fat diet induced obese rats via the activation of AMPK pathway and SIRT1. Food & Function 2018;9(9):4906-15. doi: 10.1039/c8fo00986d.
  29. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 2006;127(6):1109-22. doi: 10.1016/j.cell.2006.11.013.
  30. Bare G-HZRJ. O. Lerin C. Kim SH Mostoslavsky R. Alt FW Wu Z. Puigserver P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO Journal 2007;26:1913-23. doi: 10.1038/sj.emboj.7601633.
  31. Hernández-Lepe MA, Wall-Medrano A, López-Díaz JA, Juárez-Oropeza MA, Luqueño-Bocardo OI, Hernández-Torres RP, et al. Hypolipidemic effect of Arthrospira (Spirulina) maxima supplementation and a systematic physical exercise program in overweight and obese men: A double-blind, randomized, and crossover controlled trial. Marine Drugs 2019;17(5):270. doi: 10.3390/md17050270.
  32. Akbarpour M, Mehrabe E. The Effect of Aerobic Exercise and Spirulina Supplementation on Some Cardiovascular Risk Factors in Overweight Women with Type 2 Diabetes. Journal of Sport Biosciences 2020;12(2):207-22. doi: 10.22059/jsb.2020.276235.1330.
  33. Upasani C, Balaraman R. Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats. hytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 2003;17(4):330-4. doi: 10.1002/ptr.1135.
  34. Nagaoka S, Shimizu K, Kaneko H, Shibayama F, Morikawa K, Kanamaru Y, et al. A novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrate in rats. The Journal of Nutrition 2005;135(10):2425-30. doi: 10.1093/jn/135.10.2425.
  35. Oscai LB, Essig DA, Palmer WK. Lipase regulation of muscle triglyceride hydrolysis. Journal of Applied Physiology 1990;69(5):1571-7. doi: 10.1152/jappl.1990.69.5.1571.
  36. Tan S, Wang J, Cao L, Guo Z, Wang Y. Positive effect of exercise training at maximal fat oxidation intensity on body composition and lipid metabolism in overweight middle‐aged women. Clinical Physiology and Functional Imaging 2016;36(3):225-30. doi: 10.1111/cpf.12217.