بررسی نقش استرس شبکه اندوپلاسمی در پیشرفت پارکینسونیسم القاء شده با سم 6- هیدروکسی دپامین در موش بزرگ ازمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

مرکز تحقیقات سلولی و ملکولی، پژوهشکده جلوگیری از بیماری های غیر واگیر، دانشگاه علوم پزشکی قزوین، قزوین، ایران

چکیده

هدف: در این مطالعه  با بررسی بیان دو پروتئین شاخص استرس شبکه آندوپلاسمی (ER), GRP78 و CHOP در استریاتوم و جسم سیاه (SN) در مدل حیوانی  6- هیدروکسی دپامین (6-OHDA) بیماری پارکینسون نقش این استرس در پیشرفت این بیماری بررسی شد.
مواد و روش ها: سم 6-OHDA به ناحیه دسته مغزی جلویی میانی تزریق شد. آزمون های رفتاری در هفته های دوم، چهارم، ششم و هشتم پس از سم انجام شد. در هفته هشتم مغز برخی موش ها پرفیوز و بررسی های ایمونوهیستوشیمی برای ارزیابی بقاء نورون های دپامینرژیک در جسم سیاه و میزان بیان GRP78 وCHOP در استریاتوم صورت گرفت. مغز دیگر موش ها تازه دراورده شد و بیان GRP78 و CHOP در SN بوسیله وسترن بلاتینگ بررسی شد.
نتایج: شدت علائم رفتاری در موش های دریافت کننده سم بتدریج افزایش یافت و در هفته هشتم به حداکثر رسید. ردیابی ایمونو هیستوشیمی در SN نشان داد که بیش از 80 درصد از نورون‌های دپامینرژیک جسم سیاه در موش های دریافت کننده سم تخریب شدند. همچنین با وجود آنکه درگروه کنترل تنها 5% از سلول ها در استریاتوم پروتئین های GRP78 و CHOP را بیان کردند در گروه دریافت کننده سم میزان بیان این پروتئین ها 42% بود. در جسم سیاه گروه سم نیز بیان این پروتئین ها نزدیک به 400% افزایش یافت.
نتیجه‌گیری: استرس ER در پیشرفت پارکینسونیسم القاء شده با 6-OHDA در موش بزرگ ازمایشگاهی نقش دارد که دلالت می کند این استرس ممکن است نقشی در پیشرفت بیماری پارکینسون در انسان داشته باشد.  

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the role of endoplasmic reticulum stress in the progress of 6-hydroxydopamine-induced Parkinsonism in rat

نویسندگان [English]

  • Azita Minaei
  • Hashem Haghdoost-Yazdi
  • Mohammad Reza Sarookhani
Cellular and Molecular Research Center, Research Institute for Prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
چکیده [English]

Objective: In this study, using evaluation of the expression of two specific proteins of endoplasmic reticulum (ER) stress, GRP78 and CHOP in the striatum and substantia nigra (SN) in the 6-hydroxydopamine (6-OHDA) animal model of Parkinson’s disease (PD), the role of this stress was evaluated in the progress of Parkinson's disease (PD). 
Materials and Methods: 6-OHDA was injected into medial forebrain bundle. Behavioral tests were carried out in the second, forth, sixth and eighth weeks after the toxin. In the eighth week, the brain of some rats was perfused and immunohistochemical (IHC) assessments were performed to evaluate the survival of dopaminergic neurons in SN and also the expression of GRP78 and CHOP in striatum. The brain of other rats was freshly removed and the expression of GRP78 and CHOP in SN was evaluated using western blotting.
Results: The severity of behavioral symptoms increased progressively in 6-OHDA- treated rats and reached to maximum in the eighth week. IHC assessments revealed that more than 80% of dopaminergic neurons in SN were lost in these rats. These assessments also showed that only 5% of the cells in striatum of control rats expressed GRP78 and CHOP. On the other hand, about 42% of these cells in 6-OHDA- treated rats expressed these proteins. Furthermore, expression of GRP78 and CHOP in SN of 6-OHDA- treated rats increased 400% as compared to control rats.
Conclusion: ER stress involves in progress of 6-OHDA-induced parkinsonism in rat indicating this stress may have a role in progress of PD in human beings.

کلیدواژه‌ها [English]

  • Parkinson’s disease
  • 6-hydroxydopamine
  • GRP78
  • CHOP
  • Striatum
  • Substantia nigra
  • Rat
  1. Mercado G, Castillo V, Soto P, Sidhu A. ER stress and Parkinson's disease: pathological inputs that converge into the secretory pathway. Brain Research 2016; 1648:626-632. doi: 10.1016/j.brainres.2016.04.042.
  2. Lang AE, Lozano AM. Parkinson's disease. first of two parts.  New England Journal of Medicine 1998; 1130-1143. doi: 10.1056/NEJM199810083391506.
  3. Dong J, Cui Y, Li S, Le W. Current pharmaceutical treatments and alternative therapies of Parkinson’s disease. Current Neuropharmacology 2016; 14(4):339-355. doi: 10.2174/1570159x14666151120123025.
  4. Calì T, Ottolini D, Brini M. Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. BioFactors 2011; 37(3):228-240. doi: 10.1002/biof.159.
  5. Dauer W,  Przedborski S. Parkinson's disease: mechanisms and models. Neuron 2003; 39(6):889-909. doi: 10.1016/s0896-6273(03)00568-3.
  6. Goswami P, Gupta S, Biswas J, Joshi N, Swarnkar S, Nath C, et al. Endoplasmic reticulum stress plays a key role in rotenone-induced apoptotic death of neurons. Molecular Neurobiology 2016; 53(1):285-298. doi: 10.1007/s12035-014-9001-5.
  7. Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. Journal of Neuroscience 2002; 22(24):10690-10698. doi: 10.1523/JNEUROSCI.22-24-10690.2002.
  8. Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nature Reviews Neuroscience 2014; 15(4):233-249. doi: 10.1038/nrn3689.
  9. Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 2006; 66:S102-S109. doi: 10.1212/01.wnl.0000192306.98198.ec.
  10. Bhandary B, Marahatta A, Kim H-R, Chae H-J. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. International Journal of Molecular Sciences 2012; 14(1):434-456. doi: 10.3390/ijms14010434.
  11. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334(6059):1081-1086. doi: 10.1126/science.1209038.
  12. Doultsinos D, Avril T, Lhomond S, Dejeans N, Guédat P, Chevet E. Control of the unfolded protein response in health and disease. SLAS Discovery 2017; 22(7):787-800. doi: 10.1177/2472555217701685.
  13. Walter P, Ron D. Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology 2007; 8(7):519-529. doi: 10.1038/nrm2199.
  14. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology 2000; 2(6):326-332. doi: 10.1038/35014014.
  15. Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL, et al. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Clinical Cancer Research 2012; 72(6):1321-1331. doi: 10.1158/0008-5472.CAN-11-3213.
  16. Wan XS, Lu XH, Xiao YC, Lin Y, Zhu H, Ding T, et al. ATF4-and CHOP-dependent induction of FGF21 through endoplasmic reticulum stress. BioMed Research International 2014; 2014:807874. doi: 10.1155/2014/807874.
  17. Zhang HY, Wang ZG, Lu XH, Kong XX, Wu FZ, Lin L, et al. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Molecular Neurobiology 2015; 51(3):1343-1352. doi: 10.1007/s12035-014-8813-7.
  18. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta 2013; 1833(12):3460-3470. doi: 10.1016/j.bbamcr.2013.06.028.
  19. Silva RM, Ries V, Oo TF, Yarygina O, Jackson-Lewis V, Ryu EJ, et al. CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. Journal of Neurochemistry 2005; 95(4):974-986. doi: 10.1111/j.1471-4159.2005.03428.x
  20. Li B, Xiao L, Wang ZY, Zheng P. Knockdown of STIM1 inhibits 6-hydroxydopamine-induced oxidative stress through attenuating calcium-dependent ER stress and mitochondrial dysfunction in undifferentiated PC12 cells. Free Radical Research 2014; 48(7):758-768. doi: 10.3109/10715762.2014.905687
  21. Oh, Y-M, Jang E-H, Ko J-H, J.-H. Kang J-H, Park C-S, Han S-B, et al. Inhibition of 6-hydroxydopamine-induced endoplasmic reticulum stress by l-carnosine in SH-SY5Y cells. Neuroscience Letter 2009; 459(1): 7-10. doi: 10.1016/j.neulet.2009.04.047
  22. Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurología  2017; 32(8):533-539. doi: 10.1016/j.nrl.2015.06.011
  23. Holtz WA, O'Malley KL. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. Journal of Biological Chemistry 2003; 278 (21):19367-19377. doi: 10.1074/jbc.M211821200
  24. Blandini F, Levandis G, Bazzini E, Nappi G, Armentero MT. Time‐course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6‐hydroxydopamine in the rat: new clues from an old model. European Journal of Neuroscience 2007; 25(2): 397-405. doi: 10.1111/j.1460-9568.2006.05285.x
  25. Glajch KE, Fleming SM, Surmeier DJ, Osten P. Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson's disease. Behavioural Brain Research 2012; 230(2):309-16. doi: 10.1016/j.bbr.2011.12.007.
  26. Haghdoost-Yazdi H, Piri H, Faraji A, Fraidouni N, Dargahi T, Mahmudi M, et al. Pretreatment with potassium channel blockers of 4-aminopyridine and tetraethylammonium attenuates behavioural symptoms of Parkinsonism induced by intrastriatal injection of 6-hydroxydopamine; the role of lipid peroxidation. Neurological Research 2016; 38(4):294-300. doi: 10.1080/01616412.2015.1114290
  27. Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging cell 2010; 9(2):135-146. doi: 10.1111/j.1474-9726.2009.00543.x.
  28. Minaei A, Haghdoost-Yazdi H. Dexmedetomidine attenuates the induction and reverses the progress of 6-hydroxydopamine-induced parkinsonism; involvement of KATP channels, alpha 2 adrenoceptors and anti-inflammatory mechanisms. Toxicology and Applied Pharmacology 2019; 382:114743. doi: 10.1016/j.taap.2019.114743
  29. Paxinos G. Watson C. The rat brain in stereotaxic coordinates: hard cover edition. 2006: Elsevier.
  30. Haghdoost-Yazdi H., Faraji A, Fraidouni N, Movahedi M, Hadibeygi E, Vaezi F. Significant effects of 4-aminopyridine and tetraethylammonium in the treatment of 6-hydroxydopamine-induced Parkinson's disease. Behavioural Brain Research 2011; 223(1):70-74. doi: 10.1016/j.bbr.2011.04.021.
  31. Haghdoost-Yazdi H, Sarookhani M, Faraj A, Fraidouni N, Dargahi T, Yaghoubidoust MH, et al. Evaluation of the association between blood homocysteine concentration and the degree of behavioral symptoms in the 6-hydroxydopamine-induced Parkinsonism in rat. Pharmacology Biochemitry and Behaviour 2014; 124:297-304. doi: 10.1016/j.pbb.2014.06.020.
  32. Schallert T, Kozlowski DA, Humm JL, Cocke RR. Use-dependent structural events in recovery of function. Advances in Neurology and Neuroscience 1997; 73:229-238.
  33. Cóppola-Segovia V, Cavarsan C, Maia FG, Ferraz AC, Nakao LS, Lima MM, et al. ER stress induced by Tunicamycin triggers α-Synuclein oligomerization, dopaminergic neurons death and locomotor impairment: a new model of Parkinson’s disease. Molecular Neurobiology 2017; 54(8):5798-5806. doi: 10.1007/s12035-016-0114-x
  34. Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the mammalian unfolded protein response. Annual Review of Cell and Developmental Biology 2002; 18:575-99. doi: 10.1146/annurev.cellbio.18.011402.160624.
  35. Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends in Cell Biology 2000; 10(12):524-530. doi: 10.1016/s0962-8924(00)01852-3.
  36. Yuan H, Sarre S, Ebinger G, Michotte Y. Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson's disease. Journal of Neuroscience Methods 2005; 144(1):35-45. doi: 10.1016/j.jneumeth.2004.10.004.
  37. Tao K, Wang B, Feng D, Zhang W, Lu F, Lai J, et al. Salidroside protects against 6-hydroxydopamine-induced cytotoxicity by attenuating ER stress. Neuroscience Bulletin 2016; 32(1):61-69. doi: 10.1007/s12264-015-0001-x.
  38. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harbor Perspectives in Biology 2013; 5(3):a013169. doi: 10.1101/cshperspect.a013169.
  39. Cai P, Ye J, Zhu J, Liu D, Chen D, Wei X, et al. Inhibition of endoplasmic reticulum stress is involved in the neuroprotective effect of bFGF in the 6-OHDA-induced Parkinson’s disease model. Aging and Disease 2016; 7(4):336-449. doi: 10.14336/AD.2016.0117.
  40. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes & Development 2004; 18(24):3066-3077. doi: 10.1101/gad.1250704.
  41. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLOS Biology 2006; 4(11):e374. doi: 10.1371/journal.pbio.0040374.
  42. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes & Development 1998; 12(7):982-995. doi: 10.1101/gad.12.7.982.
  43. Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP, et al. Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4–CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. Journal of Neuroscience 2010; 30(50):16938-16948. doi: 10.1523/JNEUROSCI.1598-10.2010.
  44. Tanaka K-I, Fukuoka S, Kawahara S, Kimoto N, Ogawa N. Effect of cabergoline on increase of several ER stress-related molecules in 6-OHDA-lesioned mice. Neurological Sciences 2013; 34(2):259-61. doi: 10.1007/s10072-012-0993-1
  45. Kirik D, Rosenblad C, Björklund A. Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exprimental Neurology 1998; 152(2):259-277. doi: 10.1006/exnr.1998.6848
  46. Yan C, Liu J, Gao J, Sun Y, Zhang L, Song H, et al. IRE1 promotes neurodegeneration through autophagy-dependent neuron death in the Drosophila model of Parkinson’s disease. Cell Death and Disease 2019; 10(11):1-15. doi: 10.1038/s41419-019-2039-6.
  47. Mercado G, Valdés P, Hetz C. An ERcentric view of Parkinson's disease. Trends in Molecular Medicine 2013; 19(3):165-175. doi: 10.1016/j.molmed.2012.12.005.
  48. Iancu R, Mohapel P, Brundin P, Paul G. Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice. Behavioural Brain Research 2005; 162(1):1-10. doi: 10.1016/j.bbr.2005.02.023.
  49. Ning B, Deng M, Zhang Q, Wang N, Fang Y. β-Asarone inhibits IRE1/XBP1 endoplasmic reticulum stress pathway in 6-OHDA-induced parkinsonian rats. Neurochemistry Research 2016; 41(8):2097-2101. doi: 10.1007/s11064-016-1922-0
  50. Wei HJ, Xu JH, Li MH, Tang JP, Zou W, Zhang P, et al. Hydrogen sulfide inhibits homocysteine-induced endoplasmic reticulum stress and neuronal apoptosis in rat hippocampus via upregulation of the BDNF-TrkB pathway. Acta Pharmacologica Sinica 2014; 35(6):707-715. doi: 10.1038/aps.2013.197.