تأثیر یک دوره تمرین تناوبی با شدت بالا بر محتوای پروتئین‌های AMPK و PGC-1α در بافت عضله قلب موش‌های صحرایی مبتلا به دیابت نوع 2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران

2 واحد هشتگرد، دانشگاه آزاد اسلامی، البرز، ایران

3 گروه فیزیولوژی ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شیراز، شیراز، ایران

چکیده

مقدمه و هدف: پروتئین‌های AMPK و PGC-1α از عوامل مهم در تنظیم فرآیندهایی مانند بایوژنز میتوکندری، حفظ تعادل انرژی داخل سلولی هستند که بیماری دیابت می‌تواند در عملکردهای این پروتئین‌ها اختلال ایجاد کند. هدف از این مطالعه، بررسی تأثیر یک دوره تمرین تناوبی با شدت بالا بر محتوای پروتئین‌های AMPK و PGC-1α در بافت عضله قلب موش‌های صحرایی نر مبتلا به دیابت نوع 2 می‌باشد.
مواد و روش‌ها: در این مطالعه تجربی، 12 سر موش صحرایی نر 2 ماهه از نژاد اسپراگوداولی با میانگین وزنی 20±270 گرم انتخاب و پس از دیابتی شدن از طریق القاء استرپتوزوتوسین و نیکوتین‌آمید به روش تصادفی به 2 گروه، تمرین و کنترل (هر گروه 6 سر) تقسیم ‏شدند. گروه تمرین 4 روز در هفته به‏ مدت 8 هفته به تمرین HIIT مطابق با برنامه تمرینی پرداختند؛ در حالی که گروه کنترل هیچ‌گونه برنامه تمرینی نداشتند. همچنین موش‌های صحرایی هیچ‌گونه درمانی با انسولین را در طول دوره پژوهش نداشتند. برای تجزیه‌ و تحلیل داده‌ها از آزمون تی مستقل استفاده‏ شد.
نتایج: افزایش معنی‌داری در محتوای پروتئین‌های AMPK (001/0P=) و PGC-1α (0001/0P=) در گروه‌ تمرین HIIT نسبت به کنترل مشاهده شد.
نتیجه‌گیری: نتایج نشان دادند که تمرین HIIT با افزایش محتوای پروتئین‌های AMPK و PGC-1α می‌تواند در افزایش ATP و همچنین افزایش بیوژنز میتوکندیریایی تاثیرگذار باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of a period of high-intensity interval training on the content of AMPK and PGC-1α proteins in the heart muscle tissue of rats with type 2 diabetes

نویسندگان [English]

  • Masoud Jokar 1
  • Mohammad Sherafati Moghadam 2
  • Farhad Daryanoosh 3
1 Department Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran, Iran
2 Hashtgerd Branch, Islamic Azad University, Alborz, Iran
3 Department of Exercise Physiology, School of Education and Psychology, University of Shiraz, Shiraz, Iran
چکیده [English]

Background and Objective: AMPK and PGC-1α proteins are important factors in regulating processes such as mitochondrial biogenesis, maintaining intracellular energy balance, which diabetes can disturb the function of these proteins. The aim of this study was to investigate the effect of a period high-intensity interval training on the content of AMPK and PGC-1α proteins in the heart muscle tissue of male rats with type 2 diabetes.
Materials and Methods: In this experimental study, 12 two-month-old Sprague-Dawley rats with a mean weight of 270±20 g were selected. After diabetic induction with STZ and nicotinamide, rats were randomly assigned to two groups, training and control (6 rats in group each). The training group trained for 4 days a week in accordance with the training program for 8 weeks; while the control group did not have any training program. Also, rats did not receive any insulin treatment during the study period. The independent t-test was used to analyze the data. Significance level is considered p≤0.05.
Results: A significant increase was observed in the content of AMPK (P=0.001) and PGC-1α (P=0.0001) proteins in the High-Intensity Interval Training group compared to control.
Conclusion: The results showed that HIIT training could increase ATP and mitochondrial biogenesis by increasing the content of AMPK and PGC-1α proteins.

کلیدواژه‌ها [English]

  • Cardiac muscle
  • High-Intensity interval training
  • AMPK
  • PGC-1α
  • Type 2 diabetes
  1. Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic cardiomyopathy: current and future therapies. Beyond glycemic control. Frontiers in physiology 2018; 9:1514.
  2. Tate M, Grieve DJ, Ritchie RH. Are targeted therapies for diabetic cardiomyopathy on the horizon?. Clinical Science 2017;131(10):897-915.
  3. De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Frontiers in Endocrinology 2018; 9:2.
  4. Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2014;7:241-53.
  5. Kim J, Yang G, Kim Y, Kim J, Ha J. AMPK activators: mechanisms of action and physiological activities. Experimental & Molecular Medicine 2016; 48(4):e224.
  6. Carling D. AMPK signalling in health and disease. Current Opinion in Cell Biology 2017; 45:31-7.
  7. Tabari E, Mohebbi H, Karimi P, Moghaddami K, Khalafi M. The effects of a 12 weeks interval training with high and moderate intensity on PGC-1α of skeletal muscle in type 2 diabetic male rats. Iranian Journal of Diabetes and Metabolism 2019; 18 (4) :179-188.
  8. Khoramshahi S. Effect of five weeks of high-intensity interval training on the expression of miR-23a and Atrogin-1 in gastrocnemius muscles of diabetic male rats. Iranian Journal of Endocrinology and Metabolism 2017; 18 (5): 361-7.
  9. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. The Journal of Physiology 2012; 590(5):1077-84.
  10. Trilk JL, Singhal A, Bigelman KA, Cureton KJ. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. European Journal of applied physiology 2011; 111(8):1591-7.
  11. Hafstad AD, Boardman NT, Lund J, Hagve M, Khalid AM, Wisløff U, et al. High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. Journal of Applied Physiology 2011;111(5):1235-41.
  12. Sun XL, Lessard SJ, An D, Koh HJ, Esumi H, Hirshman MF, et al. Sucrose nonfermenting AMPK related kinase (SNARK) regulates exercise stimulated and ischemia‐stimulated glucose transport in the heart. Journal of Cellular Biochemistry 2019; 120(1): 685-96.
  13. Summermatter S, Handschin C. PGC-1α and exercise in the control of body weight. International Journal of Obesity 2012; 36 (11):1428-35.
  14. Damirchi, A., Ebadi, B. The effects of the intensity of interval training on mitochondrial dynamics-related proteins in the heart of male rats with myocardial infarction. Journal of Applied Exercise Physiology 2019; 14(28): 159-172.
  15. Sherafati Moghadam M, Salesi M, Daryanoosh F, Hemati Nafar M, Fallahi A. The Effect of 4 Weeks of High Intensity Interval Training on the Content of AKT1, mTOR, P70S6K1 and 4E-BP1 in Soleus Skeletal Muscle of Rats with Type 2 Diabetes: An Experimental Study. Journal of Rafsanjan University of Medical Sciences 2018; 17 (9):843-854.
  16. Safhi MM, Anwer T, Khan G, Siddiqui R, Moni Sivakumar S, Alam MF. The combination of canagliflozin and omega-3 fatty acid ameliorates insulin resistance and cardiac biomarkers via modulation of inflammatory cytokines in type 2 diabetic rats. The Korean Journal of Physiology & Pharmacology 2018; 22(5):493-501.
  17. Khalili A, Nekooeian AA, Khosravi MB. Oleuropein improves glucose tolerance and lipid profile in rats with simultaneous renovascular hypertension and type 2 diabetes. Journal of Asian Natural Products Research 2017; 19(10):1011-21.
  18. Jokar M, Sherafati Moghadam M. High intensity interval training inhibits autophagy in the heart tissue of type 2 diabetic rats by decreasing the content of FOXO3a and Beclin-1 proteins. Iranian Journal of Endocrinology and Metabolism 2019; 18 (6) :292-299.
  19. Garcia NF, Sponton AC, Delbin MA, Parente JM, Castro MM, Zanesco A, et al. Metabolic parameters and responsiveness of isolated iliac artery in LDLr-/-mice: role of aerobic exercise training. American Journal of Cardiovascular Disease 2017; 7(2):64-71.
  20. Shadmehri S, Sherafati Moghadam M, Daryanoosh F, Aghaei bahmanbeglou N. The Effect of Endurance Exercise on mTORC1 Marker Pathway in the Soleus Muscle of Type 2 Diabetic Rats. The Journal of Qazvin University of Medical Sciences 2019; 23 (2):92-103.
  21. Jokar M, Sherafati Moghadam M, Daryanoosh F. The Effect of 8 Weeks Endurance Training on the Content of FOXO3a‌ ‌and Beclin-1 Proteins in Heart Muscle Tissue of Rats With Type 2 Diabetic. The Journal of Qazvin University of Medical Sciences 2020; 23 (6):2-11.
  22. Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, et al. Mechanism of action of compound-13: an α1-selective small molecule activator of AMPK. Chemistry & Biology 2014;21(7):866-79.
  23. Liu HT, Pan SS. Late Exercise Preconditioning Promotes Autophagy against Exhaustive Exercise-Induced Myocardial Injury through the Activation of the AMPK-mTOR-ULK1 Pathway. BioMed Research International 2019; 1-10.
  24. Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metabolism 2014; 20(1):10-25.
  25. Casuso RA, Plaza-Díaz J, Ruiz-Ojeda FJ, Aragón-Vela J, Robles-Sanchez C, Nordsborg NB, et al. High-intensity high-volume swimming induces more robust signaling through PGC-1α and AMPK activation than sprint interval swimming in m. triceps brachii. PloS One 2017;12(10): e0185494.
  26. Torma F, Gombos Z, Jokai M, Takeda M, Mimura T, Radak Z. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Medicine and Health Science 2019; 1(1):24-32.
  27. Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Failure Reviews 2012; 17(3):325-44.
  28. Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 2015; 130(4):211-20.
  29. Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated protein kinase in the control of cardiac metabolism and remodeling. Current Heart Failure Reports 2012; 9(3):164-73.
  30. Esmailee B, Abdi A, Daloii AA, Farzanegi P. The effect of aerobic exercise along with resveratrol supplementation on myocardial AMPK and MAFbx gene expression of diabetic rats. Journal of Birjand University of Medical Sciences 2020; 27(2):150-160.
  31. Daniels A, Van Bilsen M, Janssen BJ, Brouns AE, Cleutjens JP, Roemen TH, Schaart G, Van Der Velden J, Van Der Vusse GJ, Van Nieuwenhoven FA. Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodelling. Acta Physiologica 2010; 200(1):11-22.
  32. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, Faridnia M, Moghaddami K. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients 2020; 12(4):925.
  33. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011; 472(7342):230-3.
  34. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, et al. Structural basis of AMPK regulation by small molecule activators. Nature Communications 2013; 4(1):1-0.
  35. Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends in Endocrinology & Metabolism 2012; 23(9): 459-66.
  36. Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends in Endocrinology & Metabolism 2014; 25(3):138-45.
  37. Baghadam M, Mohamadzadeh salamat K, Azizbeidi K, Baesi K. The effect of 8 weeks aerobic training on cardiac PGC-1α gene expression and plasma irisin in STZ-induced diabetics’ rats. Iranian Journal of Diabetes and Metabolism 2019; 18 (5) :228-235.
  38.  Baghadam M, Mohamadzadeh salamat Kh, Azizbeigi K, Baesi K. The Effect of Resistance Training on IRSIN and Gene Expression of PGC1α in the Cardiac Muscle in STZ-Induced Diabetic Rats. Community Health Journal 2017; 12 (3):58-64.