تأثیر تمرین تناوبی سرعتی (SIT) کوتاه مدت بر پارامترهای اسپرمی و شاخص های اسپرماتوژنز در رت های نر بالغ ویستار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد فیزیولوژی ورزشی، دانشگاه شاهد. تهران، ایران

2 گروه تربیت بدنی و علوم ورزشی، دانشکده علوم انسانی، دانشگاه شاهد، تهران ایران

چکیده

مقدمه و هدف: تأثیر تمرین تناوبی سرعتی (SIT) کوتاه مدت بر سیستم تولید مثل جنس نر از جمله موضوعات مهمی است که تا به حال بررسی نشده است. هدف از این مطالعه بررسی تأثیر تمرین تناوبی سرعتی (SIT) کوتاه مدت بر پارامترهای اسپرمی و شاخص های اسپرماتوژنز در رت های نر بالغ ویستار بود.
مواد و روش ها: این مطالعه از نوع تجربی بود که در آن ۲۰ سر رت نر ویستار، تصادفی به دو گروه کنترل (10=n) و تمرین SIT (10=n) تقسیم شدند. تمرین سه جلسه در هفته و به مدت پنج هفته اجرا شد. چهل و هشت ساعت پس از آخرین جلسه تمرین، چهار سر رت از هر گروه به طور تصادفی انتخاب و نمونه برداری شدند و سپس سنجش های بافتی، سرمی و اسپرمی انجام شد. داده ها با استفاده از روش آماری تی مستقل و با نرم افزارSPSS نسخه 22 تجزیه و تحلیل شد (۰۵/۰< P).
نتایج: میزان تستوسترون سرمی، تراکم چربی بینابینی بیضه و تعداد سلول های لیدیگ گروه تمرین نسبت به گروه کنترل در حد معنا داری زیادتر بود (۰۵/۰< P). شاخص تمایز لوله ای (TDI)، شاخص اسپرمیوژنز (SI)، ضریب تجمعی (RI)؛ همچنین تعداد، تحرک و زیست پذیری اسپرم گروه تمرین نسبت به گروه کنترل در حد معنا داری کم تر بود (۰۵/۰< P)؛ با وجود این، بین گروه ها از نظر تعداد سلول های اسپرم ساز، قطر لوله اسپرم ساز، ضخامت اپی تلیوم، آسیب DNA اسپرم و بلوغ هسته اسپرم تفاوت معناداری مشاهده نشد (۰۵/۰> P).
نتیجه‌گیری: با توجه به نتایج پژوهش حاضر به نظر می رسد تمرینات تناوبی سرعتی کوتاه مدت می تواند به بهبود توان هوازی و برخی از شاخص های هورمونی و تولید مثلی منجر شود؛ با وجود این، کاهش برخی از پارامترهای اسپرمی و شاخص های اسپرماتوژنز نیاز به مطالعات بیش‌تری برای تعیین مناسب ترین شدت و مدت تمرینات SIT در این زمینه وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of short-term sprint interval training (SIT) on sperm parameters and spermatogenesis indexes in adult male wistar rats

نویسندگان [English]

  • Mehdi Asadi 1
  • Mohammad Rahmani 2
  • Ali Samadi 2
1 Department of Exercise Physiology, Shahed University, Tehran, Iran
2 Assistant Professor, Department of Physical Education and Sport Sciences, Faculty of Humanities, Shahed University, Tehran, Iran
چکیده [English]

Background and Objective: The effect of short-term sprint interval training (SIT) on the male reproductive system is one of the important issues that has not been studied so far. The present study aimed to investigate the effect of SIT on sperm parameters and spermatogenesis indices in adult, male Wister rats.
Materials and Methods: This was an experimental study in which 20male Wistar rats were randomly divided into two groups, control (n = 10) and SIT (n = 10). The training was performed thrice weekly for five weeks. Forty-eight hours after the last training session, four rats from each group were randomly selected and sacrificed, and then tissue, serum, and sperm evaluations were conducted. Data were analyzed by an independent t-test using SPSS software version 22 (p < 0.05).
Results: In the SIT group, serum testosterone levels, testicular interstitial fat density and the number of Leydig cells were significantly higher compared to the control group (p < 0.05). The tubular differentiation index (TDI), spermiogenesis index (SI), repopulation indices (RI), and the number, mobility and sperm viability were significantly lower in the SIT group in comparison with the control group (p < 0.05). However, the number of seminiferous cells, the diameter of seminiferous tubules, the thickness of the seminiferous tubular epithelium, the sperm DNA damage, and the sperm chromatin quality were not significantly different between groups (P>0.05).
 Conclusion: Based on the findings of this study, it seems that short-term SIT training may improve aerobic capacity and some hormonal and reproductive indices. However, as it may reduce some sperm parameters and spermatogenesis indices more research is needed to determine the best intensity and duration of SIT for reproductive purposes.

کلیدواژه‌ها [English]

  • Rat
  • Sprint interval training
  • Reproductive system
  1. Vollaard NBJ, Metcalfe RS. Research into the health benefits of sprint interval training should focus on protocols with fewer and shorter sprints. Sports Medicine 2017;47(12):2443–51. doi: 10.1007/s40279-017-0727-x.
  2. Metcalfe RS, Atef H, MacKintosh K, McNarry M, Ryde G, Hill DM, et al. Time-efficient and computer-guided sprint interval exercise training for improving health in the workplace: A randomised mixed-methods feasibility study in office-based employees. BMC Public Health 2020;20(12):313. doi: 10.1186/s12889-020-8444-z.
  3. Sequeira S, Cruz C, Pinto D, Santos L, Marques A. Prevalence of barriers for physical activity in adults according to gender and socioeconomic status. British Journal of Sports Medicine 2011; 45(15): 18–9. doi: 10.1136/bjsports-2011-090606.59
  4. Gibala MJ. High-intensity interval training: A time-efficient strategy for health promotion?. Current Sports Medicine Reports 2007;6(4):211-3. PMID: 17617995
  5. Astrand I, Astrand P-O, Christensen EH, Hedman R. Intermittent muscular work. Acta Physiologica Scandinavica 1960;48:448-53. doi: 10.1111/j.1748-1716.1960.tb01879.x.
  6. 21

     
    Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. Journal of Physiology 2012;590(5):1077–84 doi: 10.1113/jphysiol.2011.224725..
  7. Frazão DT, Defarias LF, Dantas TC, Krinski K, Elsangedy HM, Prestes J, et al. Feeling of pleasure to high-intensity interval exercise is dependent of the number of work bouts and physical activity status. PLoS One 2016; 11(3):e0152752. doi: 10.1371/journal.pone.0152752.
  8. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults. Medicine & Science in Sports & Exercise 2011;43(7):1334–59. doi: 10.1249/MSS.0b013e318213fefb.
  9. Hardcastle SJ, Ray H, Beale L, Hagger MS. Why sprint interval training is inappropriate for a largely sedentary population. Frontiers in Psychology. Frontiers Research Foundation 2014; 5:1505. doi: 10.3389/fpsyg.2014.01505.
  10. Hajizadeh Maleki B, Tartibian B, Chehrazi M. The effects of three different exercise modalities on markers of male reproduction in healthy subjects: A randomized controlled trial. Reproduction 2018; 153(2):157-174. doi: 10.1530/REP-16-0318.
  11. Manna I, Jana K, Samanta PK. Effect of different intensities of swimming exercise on testicular oxidative stress and reproductive dysfunction in mature male albino Wistar rats. Indian Journal of Experimental Biology 2004;42(8):816–22.  PMID: 15573534.
  12. Manna I, Jana K, Samanta PK. Effect of intensive exercise-induced testicular gametogenic and steroidogenic disorders in mature male Wistar strain rats: a correlative approach to oxidative stress. Acta Physiologica Scandinavica 2003;178(1):33–40. doi: 10.1046/j.1365-201X.2003.01095.x.
  13. Chigrinskiy E, Conway V. Protective effect of D-ribose against inhibition of rats testes function at excessive exercise. Journal of Stress Physiology & Biochemistry 2011;7(3):242–9.
  14. Hajizadeh Maleki B, Tartibian B. Resistance exercise modulates male factor infertility through anti-inflammatory and antioxidative mechanisms in infertile men: A RCT. Life Sciences 2018;203:150–60. doi: 10.1016/j.lfs.2018.04.039.
  15. Machado MV, Vieira AB, da Conceicao FG, Nascimento AR, da Nobrega ACL, Tibirica E. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome. Experimental Physiology 2017;102(12):1716–1728. doi: 10.1113/EP086416.
  16. Hazell TJ, MacPherson RE, Gravelle BM, Lemon PW. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. European Journal of Applied Physiology 2010;110(1):153–60. doi: 10.1007/s00421-010-1474-y.
  17. Kalantari Hesari A, Shahrooz R, Ahmadi A, Malekinejad H, Saboory E. Crocin prevention of anemia-induced changes in structural and functional parameters of mice testes. Journal of Applied Biomedicine 2015;13(3):213–23. doi.org/10.1016/j.jab.2015.02.001.
  18. Samadian Z, Tofighi A, Razi M, Tolouei Azar J, Ghaderi Pakdel F. Moderate-intensity exercise training ameliorates the diabetes-suppressed spermatogenesis and improves sperm parameters: Insole and simultaneous with insulin. Andrologia 2019 51(11):e13457. doi: 10.1111/and.13457. Epub 2019 Oct 23.
  19. Matos B, Howl J, Ferreira R, Fardilha M. Exploring the effect of exercise training on testicular function. European Journal of Applied Physiology 2018;119(1):1-8. doi: 10.1007/s00421-018-3989-6.
  20. Muratori M, Marchiani S, Tamburrino L, Baldi E. Sperm DNA fragmentation: mechanisms of origin. In: Advances in Experimental Medicine and Biology 2019;1166:75-85. doi: 10.1007/978-3-030-21664-1_5.
  21. Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertility and Sterility 2003;79(3):1597–605. doi: 10.1016/s0015-0282(03)00337-6.
  22. 22

     
    Rahimipour M, Talebi A, Anvari M, Sarcheshmeh A, Omidi M. Effects of different doses of ethanol on sperm parameters, chromatin structure and apoptosis in adult mice. European Journal of Obstetrics and Gynecology and Reproductive Biology 2013;170(2):423–8. doi: 10.1016/j.ejogrb.2013.06.038.
  23. Asadi M, Rahmani M, Saremi A, Nasiri E. Histomorphometric and histologic effect of endurance swimming on the testis of adult wistar rats.    International Journal of Applied Exercise Physiology 2020; 16(31):59-70. doi: 10.22080/JAEP.2020.17890.1922
  24. Saremi A, Changizi A, Kalantari A. The combination of vitamin E supplementation and intensive exercise on testicular oxidative stress and spermatogenesis in male rats. Sport Physiology 2014; 6(23): 43-54.
  25. Saremi A, Mombeini A. Influence of swimming exercise training on semen quality and oxidative stress status of the testis in obese male rats. Journal of Practical Studies at Biosciences in Sport 2015;3(6):65–73.
  26. Wang W, Wei S, Li L, Su X, Du C, Li F, et al. Proteomic analysis of murine testes lipid droplets. Scientific Reports 2015; 5:12070. doi: 10.1038/srep12070.
  27. Hu Y, Asano K, Kim S, Nagata H. Relationship between Serum Testosterone and Activities of Testicular Enzymes after Continuous and Intermittent Training in Male Rats. International Journal of Sports Medicine 2004;25(2):99–102. doi: 10.1055/s-2004-819950
  28. 23

     
    Tremblay MS, Copeland JL, Van Helder W. Influence of exercise duration on post-exercise steroid hormone responses in trained males. European Journal of Applied Physiology 2005;94(5):505–13 doi: 10.1007/s00421-005-1380-x..
  29. Lu SS, Lau CP, Tung YF, Hung SW, Chen YH, Shih HC, et al. Lactate and the effects of exercise on testosterone secretion: evidence for the involvement of a cAMP-mediated mechanism. Medicine & Science in Sports & Exercise 1997;29(8):1048–54. doi: 10.1097/00005768-199708000-00010.
  30. Fahrner CL, Hackney AC. Effects of endurance exercise on free testosterone concentration and the binding affinity of sex hormone binding globulin (SHBG). International Journal of Sports Medicine 1998;19(1):12–5. doi: 10.1055/s-2007-971872.
  31. Zou P, Wang X, Yang W, Liu C, Chen Q, Yang H, et al. Mechanisms of stress-induced spermatogenesis impairment in male rats following unpredictable chronic mild stress (uCMS). International Journal of Molecular Sciences 2019;20(18):4470. doi: 10.3390/ijms20184470.
  32. Svensson M, Rosvall P, Boza-Serrano A, Andersson E, Lexell J, Deierborg T. Forced treadmill exercise can induce stress and increase neuronal damage in a mouse model of global cerebral ischemia. Neurobiology of Stress 2016;5:8-18. doi: 10.1016/j.ynstr.2016.09.002.
  33. Oduwole O, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Frontiers in Endocrinology 2018; 9:763. doi: 10.3389/fendo.2018.00763.