پروتئین شوک حرارتی؛ کاندید واکسن سرطان

نویسندگان

1 گروه بیوشیمی، دانشکده پزشکی، دانشگاه علوم پزشکی اردبیل، ایران

2 گروه ایمنی‌شناسی، دانشکده پزشکی، دانشگاه تربیت مدرس، ایران

چکیده

مقدمه و هدف: تومورها، آنتی‌ژن‌هایی را بروز می‌دهند که توسط سیستم ایمنی به عنوان عامل بیگانه شناخته می‌شوند. پروتئین‌های شوک حرارتی، چاپرون های مولکولی می‌باشند که با اتصال به آنتی‌ژن‌های توموری، جذب آن‌ها را توسط سلول‌های عرضه کننده آنتی ژن کنترل می‌نمایند.
 
مواد و روش‌ها: این مقاله، نوعی مقاله مروری بوده که در آن جمع‌آوری اطلاعات در زمینه ایمونوتراپی، سرطان و پروتئین‌های شوک حرارتی به وسیله جستجو در اینترنت (Elsevier, Science, springer ) و به صورت محدود به زبان انگلیسی و با محدودیت زمانی (۲۰۰۰ به بعد) انجام گرفته. در میان مقالات بدست آمده از مؤلفین صاحب‌نظر و مجربی که مورد استناد واقع شده بودند، انتخاب گردیدند.
 
نتایج: کمپلکس آنتی ژن- پروتئین شوک حرارتی با بکارگیری MHCІ و MHCII باعث فعال شدن لنفوسیت های T می‌گردد. فرآیندهای درگیر در جذب این کمپلکس که سبب عرضه متقاطع آنتی ژن شده، متفاوت از فرآیندهایی است که برای آنتی ژن منفرد مطرح است؛ بنابراین طبق نظریه‌های جدید، می‌توان از این کمپلکس آنتی ژن- پروتئین شوک حرارتی به عنوان یکی از اجزاء واکسن‌های توموری استفاده نمود. این واکسن‌ها در ایمنی‌زایی علیه تومور نقش داشته و سبب برانگیختن پاسخ‌های مؤثرتر سیستم ایمنی و حفاظت علیه تومور می‌گردد.
 
نتیجه‌گیری: با خالص‌سازی کمپلکس آنتی ژن-HSP < /span> از تومور خاص می‌توان واکسن کارآمد و مؤثری علیه آن تومور ایجاد نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Heat shock proteins as a cancer vaccine candidate

نویسندگان [English]

  • Nasim Rahmani Kukia 1
  • Ardeshir Abbasi 2
  • Zuhair Mohamad Hassan 2
چکیده [English]

Background: Tumor cells express antigens that can be recognized by immune system as foreign particles. Heat shock proteins (HSPs) are molecular chaperones that bind to tumor antigens and mediate their uptake into antigen presenting cells.
Methods: This articles is a review article and its data has been collected and categorized from the articles in the field of cancer immunotherapy. All the articles were valid and searched from science engines like ScienceDirect, Elsevier, Springer and so on) and it has been tried to refer to the information of the most recent articles in these fields.
Results: HSP antigen complexes are then directed toward either the MHC class I pathway through antigen cross presentation or the conventional class II pathway, leading to activation of T cell subsets. The processes involved in internalization of HSP–antigen complexes differ somewhat from the mechanisms determined for single antigens. Accordingly these complexes can be used as component of tumor vaccines and participate in antitumor immunity. Such vaccines generate impressive immune responses and elicit specific, protective immunity.
Conclusion: When purified from a tumor, certain HSP-peptide complexes can function as effective vaccines against the tumor from which the complexes were isolated.

کلیدواژه‌ها [English]

  • Heat shock protein
  • Cancer
  • Vaccine
1. Lindquist S, Craig EA. The heat-shock proteins. Annual review of genetics. 1988;22:631-77. 2. Srivastava PK. Immunotherapy for human cancer using heat shock protein-peptide complexes. Current Oncology Reports 2005;7(2):104-8. 3. Ellis RJ. Protein misassembly: macromolecular crowding and molecular chaperones. Advances in Experimental Medicine and Biology 2007;594:1-13. 4. Guo C, Subjeck JR, Wang X-Y. Creation of Recombinant Chaperone Vaccine Using Large Heat Shock Protein for Antigen-Targeted Cancer Immunotherapy. Chaperones: Springer 2018; 345-57. 5. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat shock proteins and cancer. Trends in Pharmacological Sciences 2017;38(3):226-56. 6. Vogel M, Mayer MP, Bukau B. Allosteric regulation of Hsp70 chaperones involves a conserved interdomain linker. The Journal of Biological Chemistry 2006;281(50):38705-11. 7. Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Archives of Toxicology 2013;87(1):19-48. 8. Enomoto Y, Bharti A, Khaleque AA, Song B, Liu C, Apostolopoulos V, et al. Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. Journal of Immunology 2006;177(9):5946-55. 9. Javid B, MacAry PA, Oehlmann W, Singh M, Lehner PJ. Peptides complexed with the protein HSP70 generate efficient human cytolytic T-lymphocyte responses. Biochemical Society Transactions 2004;32(Pt 4):622-5. 10. Wang X-Y, Chen X, Manjili MH, Repasky E, Henderson R, Subjeck JR. Targeted immunotherapy using reconstituted chaperone complexes of heat shock protein 110 and melanoma-associated antigen gp100. Cancer Research 2003;63(10):2553-60. 11. Banchereau J, Palucka K. Immunotherapy: Cancer vaccines on the move. Nature Reviews Clinical Oncology 2018;15(1):9. 12. Weng D, Calderwood SK, Gong J. A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells. Chaperones: Springer 2018; 359-69. 13. Murshid A, Gong J, Stevenson MA, Calderwood SK. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert Review of Vaccines 2011;10(11):1553-68. 14. Gidalevitz T, Biswas C, Ding H, Schneidman-Duhovny D, Wolfson HJ, Stevens F, et al. Identification of the N-terminal peptide binding site of glucose-regulated protein 94. The Journal of Biological Chemistry 2004;279(16):16543-52. 15. Harris SF, Shiau AK, Agard DA. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 2004;12(6):1087-97. 16. Park JE, Facciponte J, Chen X, MacDonald I, Repasky EA, Manjili MH, et al. Chaperoning function of stress protein grp170, a member of the hsp70 superfamily, is responsible for its immunoadjuvant activity. Cancer Research 2006;66(2):1161-8. 17. Stevens SY, Cai S, Pellecchia M, Zuiderweg ER. The solution structure of the bacterial HSP70 chaperone protein domain DnaK(393-507) in complex with the peptide NRLLLTG. Protein Science: a Publication of the Protein Society 2003;12(11):2588-96. 18. Yang Y, Li Z. Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Molecules and Cells 2005;20(2):173-82. 19. Qu P, Ma JH, Zhang XM, Huang XJ, Yang XW, Yan-Fang S. A novel DNA vaccine constructed by heat shock protein 70 and melanoma antigen-encoding gene 3 against tumorigenesis. Indian Journal of Experimental Biology 2010;48(5):436-43. 20. Asea A. Mechanisms of HSP72 release. Journal of Biosciences 2007;32(3):579-84. 21. Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. The Journal of Biological Chemistry 2012;287(19):15874-85. 22. Atalay M, Oksala N, Lappalainen J, Laaksonen DE, Sen CK, Roy S. Heat shock proteins in diabetes and wound healing. Current Protein & Peptide Science 2009;1(1):85-95. 23. Xie Y, Bai O, Zhang H, Yuan J, Zong S, Chibbar R, et al. Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8(+) CTL- and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70. Journal of Cellular and Molecular Medicine 2010;14(11):2655-66. 24. Zheng H, Dai J, Stoilova D, Li Z. Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. Journal of Immunology 2001;167(12):6731-5. 25. Calderwood SK, Murshid A, Gong J. Heat shock proteins: conditional mediators of inflammation in tumor immunity. Frontiers in Immunology 2012;3:75. 26. Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunological Reviews 2009;229(1):12-26. 27. De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress & Chaperones 2011;16(3):235-49. 28. Shevtsov M, Multhoff G. Heat Shock Protein–Peptide and HSP-Based Immunotherapies for the Treatment of Cancer. Frontiers in Immunology 2016;7. 29. Gong J, Zhu B, Murshid A, Adachi H, Song B, Lee A, et al. T cell activation by heat shock protein 70 vaccine requires TLR signaling and scavenger receptor expressed by endothelial cells-1. Journal of Immunology 2009;183(5):3290-8. 30. Sanchez-Perez L, Kottke T, Daniels GA, Diaz RM, Thompson J, Pulido J, et al. Killing of normal melanocytes, combined with heat shock protein 70 and CD40L expression, cures large established melanomas. Journal of Immunology 2006;177(6):4168-77. 31. Chen T, Guo J, Han C, Yang M, Cao X. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. Journal of Immunology 2009; 182(3):1449-59. 32. Zare A, Hajhashemi M, Hassan ZM, Zarrin S, Pourpak Z, Moin M, et al. Effect of Ramadan fasting on serum heat shock protein 70 and serum lipid profile. Singapore Medical Journal 2011;52(7):491-5. 33. Heath WR, Carbone FR. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nature Immunology 2009;10(12):1237-44. 34. Steinman RM, Gutchinov B, Witmer MD, Nussenzweig MC. Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. The Journal of Experimental Medicine 1983;157(2):613-27. 35. Neefjes JJ, Momburg F. Cell biology of antigen presentation. Current Opinion in Immunology 1993;5(1):27-34. 36. Cresswell P. Assembly, transport, and function of MHC class II molecules. Annual Review of Immunology 1994;12:259-93. 37. Oura J, Tamura Y, Kamiguchi K, Kutomi G, Sahara H, Torigoe T, et al. Extracellular heat shock protein 90 plays a role in translocating chaperoned antigen from endosome to proteasome for generating antigenic peptide to be cross-presented by dendritic cells. International Immunology 2011;23(4):223-37. 38. Murshid A, Gong J, Calderwood SK. Heat-shock proteins in cancer vaccines: agents of antigen cross-presentation. Expert Review of Vaccines 2008;7(7):1019-30. 39. Norbury CC, Malide D, Gibbs JS, Bennink JR, Yewdell JW. Visualizing priming of virus-specific CD8+ T cells by infected dendritic cells in vivo. Nature immunology 2002;3(3):265-71. 40. Srivastava PK, Old LJ. Individually distinct transplantation antigens of chemically induced mouse tumors. Immunology Today 1988;9(3):78-83. 41. Wang XY, Kazim L, Repasky EA, Subjeck JR. Immunization with tumor-derived ER chaperone grp170 elicits tumor-specific CD8+ T-cell responses and reduces pulmonary metastatic disease. International Journal of Cancer 2003;105(2):226-31. 42. Calderwood SK. Heat shock proteins in breast cancer progression-a suitable case for treatment? International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 2010;26(7):681-5. 43. Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annual Review of Immunology. 2002;20:395-425. 44. Mambula SS, Calderwood SK. Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. International Journal of Hyperthermia: The Official Journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 2006;22(7):575-85. 45. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. The Journal of Clinical Investigation 2010;120(2):457-71. 46. Ciocca D, Cayado-Gutierrez N, Maccioni M, Cuello-Carrion F. Heat shock proteins (HSPs) based anti-cancer vaccines. Current Molecular Medicine 2012;12(9):1183-97. 47. Lee KP, Raez LE, Podack ER. Heat shock protein–based cancer vaccines. Hematology/Oncology Clinics of North America 2006;20(3):637-59. 48. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nature Medicine 2004;10(9):909-15. 49. Murshid A, Gong J, Calderwood SK. Purification, preparation, and use of chaperone-peptide complexes for tumor immunotherapy. Methods in Molecular Biology 2013;960:209-17. 50. Viaud S, Thery C, Ploix S, Tursz T, Lapierre V, Lantz O, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Research 2010;70(4):1281-5. 51. Chen T, Guo J, Yang M, Zhu X, Cao X. Chemokine- containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. Journal of Immunology 2011;186(4):2219-28. 52. Zhong H, Yang Y, Ma S, Xiu F, Cai Z, Zhao H, et al. Induction of a tumour-specific CTL response by exosomes isolated from heat-treated malignant ascites of gastric cancer patients. International Journal of Hyperthermia 2011;27(6):604-11. 53. Shanmugam A, Suriano R, Goswami N, Chaudhuri D, Ashok BT, Rajoria S, et al. Identification of peptide mimotopes of gp96 using single-chain antibody library. Cell Stress and Chaperones 2011;16(2):225-34. 54. Wang X-Y, Sun X, Chen X, Facciponte J, Repasky EA, Kane J, et al. Superior antitumor response induced by large stress protein chaperoned protein antigen compared with peptide antigen. The Journal of Immunology 2010;184(11):6309-19. 55. Gong J, Zhang Y, Durfee J, Weng D, Liu C, Koido S, et al. A heat shock protein 70-based vaccine with enhanced immunogenicity for clinical use. The Journal of Immunology 2010;184(1):488-96. 56. Arnold-Schild D, Kleist C, Welschof M, Opelz G, Rammensee H-G, Schild H, et al. One-step single-chain Fv recombinant antibody-based purification of gp96 for vaccine development. Cancer Research 2000;60(15):4175-8. 57. Pakravan N, Langroudi L, Hajimoradi M, Hassan ZM. Co-administration of GP96 and Her2/neu DNA vaccine in a Her2 breast cancer model. Cell Stress and Chaperones 2010;15(6):977-84. 58. Khalili A, Hassan ZM, Shahabi S, Pourfathollah AA, Ostad SN, Noori S, et al. Long acting propranolol and HSP-70 rich tumor lysate reduce tumor growth and enhance immune response against fibrosarcoma in Balb/c mice. Iranian Journal of Immunology 2013;10(2):70. 59. Khalili A, Shahabi S, Pourfathollah AA, Ostad SN, Noori S, Mahdavi M, et al. Reduced treg and onset of a TH1pattern in combined HSP70 and propranolol treatment of fibrosarcoma-bearing mice 2016. 60. Domingo‐Musibay E, Heun JM, Nevala WK, Callstrom M, Atwell T, Galanis E, et al. Endogenous Heat‐Shock Protein Induction with or Without Radiofrequency Ablation or Cryoablation in Patients with Stage IV Melanoma. The Oncologist 2017;22(9):1026-e93. 61. Vo M-C, Nguyen-Pham T-N, Lee H-J, Jung S-H, Choi N-R, Hoang M-D, et al. Chaetocin enhances dendritic cell function via the induction of heat shock protein and cancer testis antigens in myeloma cells. Oncotarget 2017;8(28):46047. 62. Li Y, Song H, Li J, Wang Y, Yan X, Zhao B, et al. Hansenula polymorpha expressed heat shock protein gp96 exerts potent T cell activation activity as an adjuvant. Journal of Biotechnology 2011;151(4):343-9. 63. Mo A, Musselli C, Chen H, Pappas J, LeClair K, Liu A, et al. A heat shock protein based polyvalent vaccine targeting HSV-2: CD4+ and CD8+ cellular immunity and protective efficacy. Vaccine 2011;29(47):8530-41. 64. Meshkat Z, Soleimanjahi H, Mirshahabi H, Meshkat M, Kheirandish M, Hassan ZM. Strong immune responses induced by a DNA vaccine containing HPV16 truncated E7 C-terminal linked to HSP70 gene. Iranian Journal of Immunology 2011;8(2):65. 65. Holakuyee M, Mahdavi M, Hassan ZM, Abolhassani M. Heat Shock Proteins Enriched-Promastigotes of Leishmania major Inducing Th2 Immune Response in BALB/c Mice. Iranian Biomedical Journal 2012;16(4):209. 66. Farzanehpour M, Soleimanjahi H, Hassan Z, Amanzadeh A, Ghaemi A, Fazeli M. HSP70 modified response against HPV based tumor. Vectors 2013;2:2. 67. Li Z, Qiao Y, Liu B, Laska EJ, Chakravarthi P, Kulko JM, et al. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clinical Cancer Research. 2005 15;11(12):4460-8 68. Ciocca DR, Frayssinet P, Cuello-Carrión FD. A pilot study with a therapeutic vaccine based on hydroxyapatite ceramic particles and self-antigens in cancer patients. Cell Stress & Chaperones 2007;12(1):33-43. 69. Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells. Clinical Cancer Research 2004;10(11):3699-707. 70. Victora G, Socorro-silva A, Volsi E, Abdallah K, Lima F, Smith R, et al. Immune response to vaccination with DNA-Hsp65 in a phase I clinical trial with head and neck cancer patients. Cancer Gene Therapy 2009;16(7):598. 71. Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. Journal of Clinical Oncology 2002;20(20):4169-80. 72. Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E, et al. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clinical Cancer Research 2003;9(9):3235-45. 73. Zhang K, Peng Z, Huang X, Qiao Z, Wang X, Wang N, et al. Phase II trial of adjuvant immunotherapy with autologous tumor-derived Gp96 vaccination in patients with gastric cancer. Journal of Cancer 2017;8(10):1826. 74. Arya R, Mallik M, Lakhotia SC. Heat shock genes - integrating cell survival and death. Journal of Biosciences 2007;32(3):595-610. 75. Chen Y, Noble EG. Is exercise beneficial to the inflammatory bowel diseases? An implication of heat shock proteins. Medical Hypotheses 2009;72(1):84-6. 76. Sagol O, Tuna B, Coker A, Karademir S, Obuz F, Astarcioglu H, et al. Immunohistochemical detection of pS2 protein and heat shock protein-70 in pancreatic adenocarcinomas. Relationship with disease extent and patient survival. Pathology, Research and Practice 2002; 198(2):77-84. 77. Lebherz-Eichinger D, Ankersmit HJ, Hacker S, Hetz H, Kimberger O, Schmidt EM, et al. HSP27 and HSP70 serum and urine levels in patients suffering from chronic kidney disease. Clinica chimica acta; International Journal of Clinical Chemistry 2012;413(1-2): 282-6. 78. Kol A, Sukhova GK, Lichtman AH, Libby P. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation 1998;98(4):300-7. 79. Velázquez MML, Salvetti NR, Amweg AN, Díaz PU, Matiller V, Ortega HH. Changes in the expression of Heat Shock Proteins in ovaries from bovines with cystic ovarian disease induced by ACTH. Research in Veterinary Science 2013;95(3):1059-67. 80. Deniz E, Guc U, Buyukbabani N, Gul A. HSP 60 expression in recurrent oral ulcerations of Behcet's disease. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics 2010;110(2):196-200. 81. Perrin V, Regulier E, Abbas-Terki T, Hassig R, Brouillet E, Aebischer P, et al. Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington's disease. Molecular Therapy: the Journal of the American Society of Gene Therapy 2007;15(5):903-11. 82. de Souza HS, West GA, Rebert N, de la Motte C, Drazba J, Fiocchi C. Increased levels of survivin, via association with heat shock protein 90, in mucosal T cells from patients with Crohn's disease. Gastroenterology 2012;143(4):1017-26.e9. 83. Mardan-Nik M, Pasdar A, Jamialahmadi K, Biabangard-Zak A, Mirhafez SR, Ghalandari M, et al. Association of heat shock protein70-2 (HSP70-2) gene polymorphism with coronary artery disease in an Iranian population. Gene 2014;550(2):180-4. 84. Wang XY, Kazim L, Repasky EA, Subjeck JR. Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. Journal of Immunology 2001;166(1):490-7. 85. Nicchitta CV, Carrick DM, Baker-Lepain JC. The messenger and the message: gp96 (GRP94)-peptide interactions in cellular immunity. Cell Stress & Chaperones 2004;9(4):325-31. 86. Linderoth NA, Popowicz A, Sastry S. Identification of the peptide-binding site in the heat shock chaperone/tumor rejection antigen gp96 (Grp94). The Journal of Biological Chemistry 2000;275(8):5472-7. 87. Wang XY, Sun X, Chen X, Facciponte J, Repasky EA, Kane J, et al. Superior antitumor response induced by large stress protein chaperoned protein antigen compared with peptide antigen. Journal of Immunology. 2010 Jun 1;184(11):6309-19. 88. Khong T, Spencer A. Targeting HSP 90 induces apoptosis and inhibits critical survival and proliferation pathways in multiple myeloma. Molecular Cancer therapeutics. 2011; 10(10):1909-17. 89. Testori A, Richards J, Whitman E, Mann GB, Lutzky J, Camacho L, et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 Study Group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 2008;26(6):955-62. 90. Chase MA, Wheeler DS, Lierl KM, Hughes VS, Wong HR, Page K. Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism. Journal of Immunology 2007;179(9):6318-24. 91. Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, Melani C. Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Research 2004;64(4):1502-8. 92. Aguilera R, Saffie C, Tittarelli A, Gonzalez FE, Ramirez M, Reyes D, et al. Heat-shock induction of tumor-derived danger signals mediates rapid monocyte differentiation into clinically effective dendritic cells. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research 2011;17(8):2474-83.