تأثیر پیش آماده‌سازی با تمرین تناوبی شدید بر محافظت قلبی و عملکرد بطن چپ در برابر آسیب ایسکمی خون‌رسانی مجدد در موش‌های صحرایی نر

نویسندگان

1 گروه فیزیولوژی، دانشکده تربیت‌بدنی و علوم ورزشی، دانشگاه خوارزمی تهران، تهران، ایران

2 گروه فیزیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران

3 مرکز آموزشی، تحقیقاتی و درمانی قلب و عروق شهید رجایی، دانشگاه علوم پزشکی ایران، تهران، ایران

چکیده

مقدمه و هدف: صدمات ناشی از ایسکمی- خون‌رسانی مجدد در قلب (IR)، یکی از اصلی‌ترین دلایل مرگ و میر در جهان به شمار می‌رود. از آنجایی که انجام تمرینات ورزشی از جمله معدود روش‌های عملی برای بهبود محافظت قلب در برابر این صدمات به شمار می­رود، هدف از پژوهش حاضر بررسی تأثیر پیش آماده‌سازی با تمرین تناوبی شدید کوتاه‌مدت بر محافظت قلبی، عملکرد بطن چپ و مکانیسم‌های احتمالی اثرگذار بود.

مواد و روش­ها: در این مطالعه، 48  موش صحرایی نر نژاد ویستار (10-8 هفته­ای با وزن 300-250 گرم) به صورت تصادفی به 5 گروه کنترل (C)، تمرین تناوبی شدید (H)، شم (Sh)، کنترل+ ایسکمی خون‌رسانی مجدد (CIR) و تمرین+ ایسکمی خون‌رسانی مجدد (HIR) تقسیم شدند. پروتکل تمرین شامل 5 روز متوالی دویدن روی نوارگردان در 6 تناوب شدید 2 دقیقه‌ای با شدت 85 تا 90 درصد VO2max و 5 تناوب آهسته­ی 2 دقیقه‌ای با شدت 55 تا 60 تا درصد VO2max بود. موش­ها در گروه­های CIR و HIR تحت عمل جراحی آسیب IR قرار گرفتند. اندازه سکته، آنزیم‌های لاکتات دهیدروژناز و کراتین کیناز، شاخص‌های عملکردی بطن چپ، کلوتو و TRPC6 اندازه­گیری و داده‌ها با استفاده از آزمون تحلیل واریانس یک طرفه و آزمون تعقیبی توکی آنالیز شدند.
 
نتایج: نتایج پژوهش حاضر کاهش معنادار اندازه سکته و آنزیم‌های شاخص آسیب قلبی را به دنبال تمرین در جریان IR نشان داد. علاوه بر این نتایج این پژوهش نشان داد که کاهش و اختلال عملکرد بطن به دنبال آسیب IR در گروه تمرین کرده (HIR) نسبت به گروه تمرین نکرده (CIR) به طور معنادار کمتر بود. همچنین یافته‌های این پژوهش افزایش معنادار کلوتو محلول در خون بعد از تمرین و بیان کمتر کانال­های TRPC6 در جریان IR را در گروه تمرین کرده نشان داد.
 
نتیجه گیری: یک دوره کوتاه‌مدت تمرین تناوبی شدید توانست باعث کاهش اندازه سکته به یک‌سوم میزان در مقایسه با گروه بدون تمرین (CIR) (کاهش 45,33 درصدی) و جلوگیری از کاهش بارز عملکرد قلب در برابر آسیب ایسکمی-خون‌رسانی مجدد شود. بر اساس نتایج به دست آمده، افزایش کلوتو به دنبال تمرین و درنتیجه بیان کمتر کانال­های TRPC6 در جریان IR، می­تواند از مکانیسم‌های افزایش محافظت قلبی و کاهش اختلال در عملکرد قلب باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of preconditioning with high intensity interval training on cardioprotection and left ventricular function against Ischemia-reperfusion injury in male rats

نویسندگان [English]

  • Maral Ramez 1
  • Farinaz Nasirinezhad 2
  • Hamid Rajabi 1
  • Nasim Naderi 3
  • Nahid Aboutaleb 2
چکیده [English]

Background and Objective: Cardiac ischemia-reperfusion (IR) is one of the main causes of death in the world. Since exercise training is one of the practical ways to improve cardioprotection against these injuries, the purpose of the present study was to investigate the effect of preconditioning with a short term of high-intensity interval training on cardioprotection, left ventricular function and possible mechanisms.
Materials and Methods: In this study, 48 male rats (8-10 weeks and 250-300 g) were randomly divided into 5 groups: control (C), high-intensity interval training (H), sham (Sh), control+ischemia-reperfusion (CIR) and high-intensity interval training+ischemia-reperfusion (HIR). The high-intensity interval training protocol consisted of 5 consecutive treadmill running in 6×2 min high intermittence with 85-90% vo2max and 5×2 min slow intermittence with 55-60% Vo2max. Rats in CIR and HIR groups were exposed to cardiac IR injury. Infarct size, lactate dehydrogenase, creatine kinase, Kloth, and TRPC6 expression were measured and data were analyzed by one way ANOVA and Tukey's post-hoc tests.
Results: The results of this study showed a significant decrease in infarct size and enzymes of cardiac injury in the training group during IR. Also, the results demonstrated that the reduction of ventricular function in the training group (HIR) was less than CIR group. As well, the results showed the significant increase in Klotho levels after training and lower expression of TRPC6 channels during IR in training group.
Conclusion: Short-term high-intensity interval training could reduce infarct size by one-third compared with the untrained group (CIR) (a decrease of 33.45%) and it could prevent noticeable reduction of cardiac function in IR injury. Based on the results, an increase in klotho following training and, consequently, lower expression of TRPC6 during IR, could be a mechanism for increasing cardioprotection and to reduce cardiac dysfunction.

کلیدواژه‌ها [English]

  • Ischemia/Reperfusion
  • Preconditioning
  • High intensity interval training
  • TRPC6
1. Powers SK, Smuder AJ, Kavazis AN, Quindry JC. Mechanisms of exercise-induced cardioprotection. Physiology 2014;29(1):27-38. 2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 2016;133(4):e38-e360. 3. Powers SK, Lennon SL, Quindry J, Mehta JL. Exercise and cardioprotection. Current Opinion in Cardiology 2002;17(5):495-502. 4. Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. Journal of Applied Physiology 2011;111(3):905-15. 5. French JP, Hamilton KL, Quindry JC, Lee Y, Upchurch PA, Powers SK.Exercise-induced protection against myocardial apoptosis and necrosis: MnSOD, calcium-handling proteins, and calpain. The Federation of American Societies for Experimental Biology Journal 2008;22(8):2862-71. 6. Quindry JC, Miller L, McGinnis G, Kliszczewicz B, Irwin JM, Landram M, et al. Ischemia reperfusion injury, KATP channels, and exercise- induced cardioprotection against apoptosis. Journal of Applied Physiology 2012;113(3):498-506. 7. Kavazis AN, McClung JM, Hood DA, Powers SK. Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. American Journal of Physiology-Heart and Circulatory Physiology 2008;294(2):H928-35. 8. Lee Y, Min,K, Talbert EE, Kavazis AN, Smuder AJ, Willis WT, et al. Exercise protects cardiac mitochondria against ischemia-reperfusion injury. Medicine & Science in Sports & Exercise 2012;44(3):397-405. 9. Rahimi M, Shekarforoush S, Asgari AR, Khoshbaten A, Rajabi H, Bazgir B, et al. The effect of high intensity interval training on cardioprotection against ischemia-reperfusion injury in wistar rats. Experimental and Clinical Sciences 2015;14:237-246. 10. Powers SK, Quindry JC, Kavazis AN. Exercise-induced cardioprotection against myocardial ischemia–reperfusion injury. Free Radical Biology and Medicine 2008;44(2):193-201. 11. Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. Journal of Applied Physiology 2011;111(3):905-15. 12. Quindry,J.C, Hamilton, K.L. Exercise and cardiac preconditioning against ischemia reperfusion injury. Current Cardiology Reviews 2013; 3(9), 220. 13. Dan Shan,Richard B. Marchase, and John C. Chatham. Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. American Journal of Physiology- Cell Physiology 2008; 294: C833–C841 14. Jian Xi, Seung-Kuy Cha, Chou-Long Huang. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nature Communications 2012; 4;3;1238. 15. Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, y Schnitzler MM, et al. Activation of TRPC6 channels is essential for lung ischaemia–reperfusion induced oedema in mice. Nature Communications 2012;3:649. 16. Shen B, Zhou S, He Y, Zhao H, Mei M, Wu X. Revealing the underlying mechanism of ischemia reperfusion injury using bioinformatics approach. Kidney and Blood Pressure Research 2013;38(1):99-108. 17. Zhao B, Yang H, Zhang R, Sun H, Liao C, Xu J, et al. The role of TRPC6 in oxidative stress-induced podocyte ischemic injury. Biochemical and Biophysical Research Communications 2015;461(2):413-20. 18. Avin KG, Coen PM, Huang W, Stolz DB, Sowa GA, Dubé JJ, et al. Skeletal muscle as a regulator of the longevity protein, Klotho. Frontiers in Physiology 2014;5:189. 19. Martín-Núñez E, Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Implications of Klotho in vascular health and disease. World Journal of Cardiology 2014;6(12):1262. 20. Song S, Gao P, Xiao H, Xu Y, Si LY. Klotho suppresses cardiomyocyte apoptosis in mice with stress-induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS One 2013;8(12):e82968. 21. Matsubara T, Miyaki A, Akazawa N, Choi Y, Ra S-G, Tanahashi K, et al. Aerobic exercise training increases plasma Klotho levels and reduces arterial stiffness in postmenopausal women. American Journal of Physiology-Heart and Circulatory Physiology 2014;306(3):H348-H55. 22. Saghiv M, EG, MS, DB-S. Effects of Aerobic Exercise Training on S-Klotho in Young and Elderly. Jacobs Journal of Physiology 2015;1(1):001. 23. Michelsen MM, Stottrup NB, Schmidt MR, Lofgren B, Jensen RV, Tropak M, et al. Exercise-induced cardioprotection is mediated by a bloodborne, transferable factor. Basic Research in Cardiology 2012;107(3):260. 24.Guiraud T, Nigam A, Gremeaux V, Meyer P, Juneau,M, Bosquet L. High-intensity interval training in cardiac rehabilitation. Sports Medicine 2012;42:587-605. 25. Rankin A, Rankin A, MacIntyre P, Hillis W. Walk or run? Is high-intensity exercise more effective than moderate-intensity exercise at reducing cardiovascular risk? Scottish Medical Journal 2012;57(2):99-102. 26.Freyssin C, Verkindt C, Prieur F, Benaich P, Maunier S, Blanc P. Cardiac rehabilitation in chronic heart failure: effect of an 8-week, high-intensity interval training versus continuous training. Archives of Physical Medicine and Rehabilitation 2012;93:1359-64. 27.Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low‐volume, high‐inten- sity interval training in health and disease. Journal of Physiology 2012;590:1077-84. 28.Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Cardiovascular Prevention and Rehabilitation 2007;14(6):753-60. 29. Kemi OJ, Haram PM, Loennechen JP, Osnes J-B, Skomedal T, Wisløff U, et al. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovascular Research 2005;67(1):161-72. 30. Azizi Y, Faghihi M, Imani A, Roghani M, Nazari A. Post-infarct treatment with [Pyr1]-apelin-13 reduces myocardial damage through reduction of oxidative injury and nitric oxide enhancement in the rat model of myocardial infarction. Peptides 2013;46:76-82. 31. Powers SK, Quindry JC, Kavazis AN. Exercise-induced cardioprotection against myocardial ischemia–reperfusion injury. Free Radical Biology and Medicine 2008;44(2):193-201. 32. Borges JP, Lessa MA. Mechanisms involved in exercise-induced cardioprotection: a systematic review. Arquivos Brasileiros de Cardiologia 2015;105(1):71-81. 33. French JP, Quindry JC, Falk DJ, Staib JL, Lee Y, Wang KK, et al. Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. American Journal of Physiology-Heart and Circulatory Physiology 2006;290(1):H128-H36. 34. Ciampone S, Borges R, de Lima IP, Mesquita FF, Cambiucci EC, Gontijo JA. Long-term exercise attenuates blood pressure responsiveness and modulates kidney angiotensin II signalling and urinary sodium excretion in SHR. Journal of the Renin-Angiotensin-Aldosterone System 2011;12(4):394-403. 35. Kawamura T, Yoshida K, Sugawara A, Nagasaka M, Mori N, Takeuchi K, et al. Regulation of skeletal muscle peroxisome proliferator-activated receptor γ expression by exercise and angiotensin-converting enzyme inhibition in fructose-fed hypertensive rats. Hypertension Research 2004;27(1):61-70. 36.Lim K, Lu T-S, Molostvov G, Lee C, Lam F, Zehnder D, et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23clinical perspective. Circulation 2012;125(18):2243-55. 37. Mitobe M, Yoshida T, Sugiura H, Shirota S, Tsuchiya K, Nihei H. Oxidative stress decreases klotho expression in a mouse kidney cell line. Nephron Experimental Nephrology 2005;101(2):e67-e74. 38. Saito K, Ishizaka N, Mitani H, Ohno M, Nagai R. Iron chelation and a free radical scavenger suppress angiotensin II‐induced downregulation of klotho, an anti‐aging gene, in rat. FEBS letters 2003;551(1-3):58-62. 39. Zhang H, Li Y, Fan Y, Wu J, Zhao B, Guan Y, et al. Klotho is a target gene of PPAR-γ. Kidney International 2008;74(6):732-9.