بررسی بیان ژن‌های اختصاصی کاردیومیوسیت‌های اولیه در اجسام جنینی سیستم قلبی-عروقی

نویسنده

گروه زیست‌شناسی، دانشگاه آزاد اسلامی- واحد تهران شرق، تهران، ایران

چکیده

مقدمه و هدف: سلول‌های بنیادی جنینی انسانی[1] (hESC) در محیط آزمایشگاهی می‌توانند به کاردیومیوسیت های ضربان دار تبدیل‌شده و مدلی را به وجود آورند که بتوان مراحل اولیه تکاملی این سیستم را بررسی نمود. زمانی که این سلول‌ها از لایه مغذی خود جدا می‌شوند، hESC ها اجسام جنینی[1] (EB) را به وجود می‌آورند که پس از کشت، نواحی از سلول‌های ضربان دار را به وجود می‌آورند. هدف از انجام این تحقیق، بررسی و مطالعه زمان بیان ژن‌های قلبی در طی ایجاد قلب است.
 
مواد و روش‌ها: پس از کشت سلول‌های بنیادی، استخـراج mRNA کاردیومیوسیت های اولیه در زمان‌های مختلف پس از تمایز انجام شد. بیان ژن‌های اختصاصی کاردیومیوسیت ها به نام OCT-4, CD-34، Brachyury، Alpha-cardiac actin، FLK1 (Vegfr-2/KDR)، ANF، MLC-2a و MLC-2v در EB انسانی[1] (hEB) از طریق RT-PCR موردبررسی قرار گرفت.
 
نتایج: بیان ژن‌های CD-34 و Brachyury در EB از روز 21 افزایش می‌یابد. بیان ژن OCT-4 در EB 5 روزه مشاهده شد. بیان ژن Alpha-cardiac actin از روز 10 افزایش می‌یابد. بیان ژن FLK1 (Vegfr-2/KDR) برای اولین بار در EB 10 روزه مشاهده گردید و در روز 14 به‌شدت افزایش یافت. افزایش بیان ژن MLC-2a و MLC-2v از روز 20 و ژن ANF از روز 45 در EB مشاهده گردید.
 
نتیجه‌گیری: سلول‌های بنیادی جنینی انسانی ابزاری مفید جهت بررسی تکامل و عملکرد سیستم قلبی- عروقی هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Candidate gene expression of primary cardiomyocytes in cardiovasular embryoid bodies

نویسنده [English]

  • Akram Sadat Tabatabaei Panah
چکیده [English]

Background and Objective: Human embryonic stem cells (hESCs) can differentiate in vitro into spontaneously contracting cardiomyocytes and produce a model to investigate the early developmental stages of this system. After removing of cells from their feeder layer, hESCs create embryoid bodies (EB). Plating of EB results in developing areas of beating cells. In the present study, cardiomyocyte gene expression time-points during heart development was investigated.
 
Materials and Methods: After stem cell culture, cardiomyocyte’s mRNA was extracted in different time-points after differentiation. The expression pattern of candidate genes CD-34, OCT-4, Brachyury, Alpha-cardiac actin, FLK1 (Vegfr-2/KDR), ANF, MLC-2a, and MLC-2v was analyzed in human EB (hEB) by RT-PCR.
 
Results: There was an enhanced expression of CD-34 from day 21 in EB in suspension. The OCT-4 gene expression was in 5-day-old EB and Brachyury expression was significantly increased by day 21. There was an enhanced expression of as Alpha-cardiac actin from day 10 in EB in suspension. The FLK1 (Vegfr-2/KDR) gene expression was first specified in 4-day-old EB and was significantly increased by day 14. There was an enhanced expression of MLC-2a and MLC-2v from day 20 and ANF by day 45 in EB in suspension.
 
Conclusion: hESCs might be useful as an effective model system for understanding the developmental processes and functioning of the human heart.
 

کلیدواژه‌ها [English]

  • Human embryonic stem cell
  • Embryoid bodies
  • Cardiomyocyte
1. Antin PB, Taylor RG, Yatskievych T. Precardiac mesoderm is specified during gastrulation in quail. Developmental Dynamics 1994; 2:4-14. 2. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circulation Research 2002; 91:189-201. 3. Delcarpio JB, Claycomb WC. Cardiomyocyte transfer into the mammalian heart. Cell-to-cell interactions in vivo and in vitro. Annals of the New York Academy of Sciences 2008; 752:267-85. 4. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154-6. 5. Grepin C, Nemer G, Nemer M. Enhanced cardiogenesis in embryonic stem cells overexpressing the GATA-4 transcription factor. Development 1997; 124:2387-95. 6. Segev H, Kenyagin-Karsenti D, Fishman B, Gerecht-Nir S, Ziskind A, Amit M, et al. Molecular analysis of cardiomyocytes derived from human embryonic stem cells. Development Growth & Differentiation 2005; 47:295-306. 7. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circulation 2003; 93:32-9. 8. Hescheler J, Fleischmann BK, Lentini S, Maltsev VA, Rohwedel J, Wobus AM, et al. Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovascular Research 1997; 36:149-62. 9. Icardo JM. Developmental biology of the vertebrate heart. Journal of Experimental Zoology 1996; 275:144-61. 10. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular Medicine 2000; 6:88-95. 11. Kehat I, Gepstein A, Spira A, Itskovitz-Eldor J, Gepstein L. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circulation Research 2002; 91:659-6. 12. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. Journal of Clinical Investigation 2001; 108:407-14. 13. Koh GY, Soonpaa MH, Klug MG, Field LJ. Long-term survival of AT-1 cardiomyocyte grafts in syngeneic myocardium. American Journal of Physiology 1993; 264:1727-33. 14. Koh GY, Soonpaa MH, Klug MG, Pride HP, Cooper BJ, Zipes DP, et al. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. Journal of Clinical Investigation 1995; 96:2034-42. 15. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulatin 2003; 33:27-40. 16. Narita N, Bielinska M, Wilson DB. Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development 1997; 124:3755-64. 17. Olson EN, Srivastava D. Molecular pathways controlling heart development. Science 1996; 272:671-6. 18. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Natutre Biotechnology 2000; 18:399-404. 19. Roell W, Lu ZJ, Bloch W, Siedner S, Tiemann K, Xia Y, et al. Cellular cardiomyoplasty improves survival after myocardial injury. Circulation 2002; 105:2435-41. 20. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145-7. 21. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circulation Research 2002; 91:501-8. 22. Chicha L, Feki A, Boni A, Irion O, Hovatta O, Jaconi M. Human Pluripotent Stem Cells Differentiated in Fully Defined Medium Generate Hematopoietic CD34+ and CD34− Progenitors with Distinct Characteristics. PLoS One 2011; 6: e14733. 23. Lian X, Bao X, Al-Ahmad A, Liu J, Wu Y, Dong W, et al. Efficient Differentiation of Human Pluripotent Stem Cells to Endothelial Progenitors via Small-Molecule Activation of WNT Signaling. Stem Cell Reports 2014; 3:804-16. 24. 24. Toivonen S, Ojala M, Hyysalo A, Ilmarinen T, Rajala K, Pekkanen-Mattila M, et al. Comparative analysis of targeted diffretiation of human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells reveals variability associated with incomplete transgene silencing in retrovirally derived hiPSC lines. Stem Cells Translational Medicine 2013; 2:83-93