تأثیر استیل اِل‌کارنیتین بر واکنش گلیوز پس از ضایعه فشاری طناب نخاعی موش صحرایی بالغ

نویسندگان

1 دانشکده پزشکی، دانشگاه شاهد، تهران، ایران

2 گروه علوم تشریح و پاتولوژی، دانشکده پزشکی دانشگاه شاهد، تهران، ایران

چکیده

مقدمه و هدف: ضایعه فشاری بروی طناب نخاعی سبب بروز طیف وسیعی از اختلالات حسی و حرکتی می‌گردد. در این تحقیق سعی شد پس از ایجاد مدل فشاری بر نخاع موش صحرایی بالغ تغییرات بافتی بررسی شود. بدین منظور واکنش گلیوز با استفاده از روش ایمنوهیستوشیمی بابیان آنزیم CNP ase و GFAP < /span> و تأثیر استیل ال کارنیتین در این روند ارزیابی شد.
 مواد و روش‌ها: 24 موش صحرایی نر نژاد اسپراگوداولی در 4 گروه بصورت تصادفی تقسیم شدند. پس از انجام لامینکتومی مهره‌های 9 تا 11 پشتی با توجه به گروه مطالعه یا کنترل اعمال فشار (30 گرم بر واحد سطح) و تزریق روزانه داخل صفاقی استیل ال کارنیتین (300 میلی‌گرم) انجام شد. پس از 4 هفته تمامی نخاع‌ها خارج و بررسی مورفومتری و ایمنوهیستوشیمی به‌صورت میانگین ± خطای استاندارد بیان گردید. پس از مشخص نمودن توزیع داده‌ها برای مقایسه نتایج از آزمون تی و آنوای یک‌طرفه با نرم‌افزار SPSS Ver19 استفاده شد.
 نتایج: نتایج مورفومتری حاکی از کاهش تعداد سلول‌های عصبی حرکتی به دنبال فشار مکانیکی است. استیل ال کارنیتین سبب کاهش این روند گردید (05/0 ≥ p). همچنین استیل ال کانیتین سبب کاهش سلول‌های آستروسیت شد (05/0 ≥ p).
 نتیجه‌گیری: برای اولین بار استیل ال کارنیتین در واکنش گلیوز مطالعه و نتایج حاکی از کاهش آستروسیت ها و افزایش حدوداً سه برابر اولیگودندروسیت ها شد. با پیش‌فرض تولید میلین جهت مشخص شدن نقش بیشتر استیل ال کارنیتین پیشنهاد بررسی درازمدت و چگونگی انتقال پیام عصبی می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of acetyl L-carnitine on gliosis reaction after spinal cord injury using a compression model in adult rats

نویسندگان [English]

  • Sadra Jamshidi 1
  • Marjan Heshmati 2
  • Mohammadreza Jalali Nadoushan 2
چکیده [English]

Background and Objective: Contusion injury causes a major variety of functional and sensory disorders. In this research, we tried to study histological changes after performing contusion model in spinal cord. For this reason, we investigated the effect of acetyl L-carnitine on gliosis reaction by using immunohistochemistry method for GFAP and CNPase after spinal cord injury(SCI).
 
Materials and Methods: In this study, 24 male adult Sprague-Dawley rats were randomly divided into 4 groups. Laminectomy at T9-T11 was done in all of the rats and based on control groups or study groups, normal saline or acetyl L-carnitine (300 mg/kg) was injected. In study groups, SCI was done by 30 gr compression. After 4 weeks, spinal cords were extracted for morphometry and immunohistochemistry study and data were analyzed using t test and ANOVA at p<0.05.
 
Results: Motoneurons reduced after SCI and acetyl L-carnitine reduced this reduction in addition to reduction of astrocytes (p<0.05).
 
Conclusion: For the first time it was shown that in gliosis reaction, acetyl L-carnitine could reduce astrocytes and increase oligodendrocytes (about 3 times) and this improvement may be due to myelin production and also due to better conduction. Further study is needed to distinguish synapse conduction.

کلیدواژه‌ها [English]

  • Acetyl L-carnitine
  • gliosis
  • Adult Rat
1. Lu J, Ashwell K. Olfactory ensheating cells: their potential use for repairing the injured spinal cord. Spine 2002; 27:887-892. 2. Mcdonald W.Liu XZ, Qu Y, Liu S,Mickey SK, Turetsky D, et al.Transplanted embryonic stem cells survive, differentiate andpromote recoveryin injured rat spinal cord.Nature Medicine Journal 1999; 5:1410-1412. 3. Cao Q, Benton RL. Stem cell repair of central nervous system injury. Journal of Neuroscience Research 2002; 68: 501-510. 4. Martin D, Robe P, Franzen R, Pelree P, Schenen J, SrevenaertA, et al. Effects of Schwann cell transplantation in a contusion model of rat spinal cord injury. Journal of Neuroscience Research 1996; 45: 588-597. 5. Lazarov-Spiegler O, Solomon AS, Zeev-Rrann AB, Hirschberg DL, Lavie V, Schwarts M. Transplantation of activated macrophages over comes central nervous system regrowth failure. Federation of American Societies for Experimental Biology Journal 1996; 10: 1296-1302. 6. Duncan ID, Hammang JP, Jackson KF, Wood PM, Bunge RR, Langford L. Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat. Journal Neurocytology 1988; 17: 351-360. 7. Tuszinski MH, Peerson Da, Ray J, Baird A, Nakahava Y, Goge FH. Fibroblasts genetically modified to produce nerve growth factor induce neuritic ingrowth after grafting to the spinal cord. Experimental Neurology 1994; 126: 1-14. 8. Ide C, Kitada M, Chakrabortty S, Taketomi M, Matsumoto N, Kikukarna S, et al. Grafting of choroid plexus ependymal cells promotes the growth of rgenerating axons in the dorsal funiculus of rat spinal cord: a preliminary report. Experimental Neurology 2001; 167: 242-251. 9. Zhao ZM, Li HJ, Liu HY, Lu SH, Yang RC, Zhang QJ, et al. Intra spinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplantation 2002; 13: 113-122. 10. Ribouche CJ, Engel AG. Tissue distribution of carnitine biosynthesis enzymes in man. Biochimestry Biophysic Acta 1980; 630: 22-29. 11. Cassano P, Flück M, Giovanna Sciancalepore A, Pesce V, Calvani M, Hoppeler H, Cantatore P, Gadaleta MN. Muscle unloading potentiates the effects of acetyl-L-carnitine on the slow oxidative muscle phenotype. Biofactors 2010; 36: 70-7. 12. Virmani A, Koverech A, Ali SF, Binienda, ZK. Acetyl L-Carnitine Modulate TP53 and IL10 Gene Expression Induced by 3-NPA Evoked Toxity in PC12 Cells. Current Neuropharmacology 2011;9:195-199. 13. Zhang R, Zhang H, Zhang Z, Wang T, Niu J, Cui D, Xu S. Neuroprotective Effects of Pre-Treatment with L-Carnitine and Acetyl –L-Carnitine on Ischemic Injury In Vivo and In Vitro. International of Molecular Sciences 2012;13:2078-90. 14. Bjorkland A, Linvall O. Cell replacement therapies for central nervous system disorders. Natural Neuroscience 2000; 3: 573-577. 15. Lu P, Jones LL, Tuszinsky MH. BDNF-expressing marrow stromal cells support extensive axonalgrowth at sites of spinal cord injury. Experimental Neurology 2005; 191: 344-360. 16. Hulsebosch CE, Recent advances in athophysiology and treatment of spinal cord injury. Advances in Physiology Education 2002; 26: 238-255. 17. Juguera Rodriguez L, Pardo Rios M, Leal Costa C, Castillo Hermoso M, Perez Alonso N, Diaz Agea JL. Relatives of people with spinal cord injury: a qualitative study of caregivers' metamorphosis. Spinal Cord 2018 [Epub ahead of print] 18. Xie Y, Song W, Zhao W, Gao Y, Shang J, Hao P, Yang Z, Duan H, Li X. Application of the sodium hyaluronate-CNTF scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation. Science China Life Sciences 2018;61:559-568. 19. Gardner AR, Diz DI, Tooze JA, Miller CD, Petty J.Injury patterns associated with hypotension in pediatric trauma patients: A national trauma database review. Trauma Acute Care Surgery 2015;78:1143-8. 20. Tarlov IM, Klinger H. Spinal cord compression studies. II. Time limits for recovery after acute compression in dogs. A.M.A Archives of Neurology and Psychiatry 1954; 71:271-90. 21. Tator CH, Hashimoto R, Raich A, Norvell D, Fehlings MG, Harrop JS, Guest J, Aarabi B, Grossman RG. Translational potential of preclinical trials of neuroprotection through pharmacotherapy for spinal cord injury. Journal of Neurosurgery Spine 2012;17(1 Suppl):157-229. 22. Dolan EJ,Tator CH.A new method for testig the force of clips for aneurysm or experimental spinal cord compression. Journal of Neurosurgery 1979;51: 229-33. 23. Sastry PS, Kalluri SR. Short review apoptosis and the nervous system. Journal of Neurochemistry 2000; 74: 1-20. 24. Lee JC, Mayer M. Gliogenesis in the central nervous sysytem. Glia 2000; 30: 105-121. 25. Zhang D, Hu X, Qian M, O'Callaghan JP, Hong JS. Astrogliosis in CNS Pathologies: Is There A Role for Microglia? Molecular Neurobiology 2010;41: 232-241. 26. Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation(Review). Trends in Neuroscience 2009;32: 638-47. 27. Beghi E. Treating epilepsy across its different stages. Therapeutic Advances in Neurological Disorders 2010; 3: 85-92. 28. Abdul HM, Calabrese V, Calvani M, Butterfield DA. Acetyl-L-carnitine-induced up-regulation of heat shock proteins protects cortical neurons against amyloid-beta peptide 1-42-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease. Journal of Neuroscience Research 2006; 84:398-408. 29. Patel SP, Sullivan PG, Patel SP, Sullivan PG, Lyttle TS, Magnuson DS, Rabchevsky AG. Acetyl-L-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Journal of Neuroscience 2012;210:296-307. 30. Patel SP, Sullivan PG, Lyttle TS, Rabchevsky AG. Acetyl-L-carnitine ameliorates Mitochondrial dysfunction following contusion spinal cord injury. Journal of Neurochemistry 2010;114:291-301. 31. Bielefeld EC, Coling D, Chen GD, Henderson D.Multiple dosing strategies with acetyl LCarnitine (ALCAR) fail to alter age-related hearing loss in the Fischer 344/NHsd rat. Journal of Negative Results in Biomedicine 2008;4:51-57. 32. Liu QY, Schaffner AE, Chang YH, Vaszil K, Barker JL. Astrocytes regulate amino acid receptor current densities in embryonic rat hippocampal neurons. Journal of Neurobiology 1997; 33:848-64. 33. Crowe DL, Boardman ML, Fong KS. Anti-Fas antibody differentially regulates apoptosis in Fas ligand resistant carcinoma lines via the caspase 3 family of cell death proteases but independently of bcl2 expression. Anticancer Research 1998; 18:3163-70. 34. Hains BC, Fullwood SD, Eaton MJ, Hulsebosch CE. Subdural engraftment of serotonergic neurons following spinal hemisection restores spinal serotonin,downregulates serotonin transporter, and increases BDNF tissue content in rat. Brain Research 2001; 913:35-46. 35. Schwab ME. Increasing plasticity and functional recovery of the lesioned spinal cord. Progress in Brain Research 2002; 137:351-9. 36. Pesaran F,Roghani M.The effect of Acetyl L carnitine in preservation of stress oxidative in experimental epilepsy model induced by kainic acid in rats.Thesis for general physicion, Medical school, Shahed University 1390. 37. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Review 2010; 4: 118–126. 38. Hota KB, Hota SK, Chaurasia OP, Singh SB. Acetyl-L-carnitine-mediated neuroprotection during hypoxia is attributed to ERK1/2-Nrf2-regulated mitochondrial biosynthesis. Hippocampus 2012;22:723-36. 39. Patel SP, Sullivan PG, Lyttle TS, Magnuson DS, Rabchevsky AG. Acetyl-L-carnitine treatment following spinal cord injury improves mitochondrial function correlated with remarkable tissue sparing and functional recovery. Neuroscience 2012;210:296-307. 40. Breitkreutz R, Babylon A, Hack V, Schuster K, Tokus M, Böhles H, Hagmüller E, Edler L, Holm E, Dröge W. Effect of carnitine on muscular glutamate uptake and intramuscular glutathione in malignant diseases. British Journal of Cancer 2000 ;82:399-403. 41. Goo MJ, Choi SM, Kim SH, Ahn BO. Protective effects of acetyl-L-carnitine on neurodegenarative changes inchronic cerebral ischemia models and learning-memory impairment in aged rats. Archives of Pharmacal Research. 2012; 35: 145-54.