مقایسه ماتریس‌های همبستگی عملی تحت مدل‌های چند متغیره همبستگی با اندازه‌های
تکراری: کاربردی روش MRIT2 قلب و کبد
بیماران تالاسمی

نویسندگان: امیرحسین هاشمیان، علیرضا افشاری صفوی، منصور رضایی و زهرا بدری

چکیده
مقدمه: هدف از استفاده از معادلات برآورده تعمیمی‌یافته در کار با داده‌های همبستگی و بهبوده مطالعات طولی، بسیار م наи وال و برتری دارند. کاربره برای انتخاب غلط ساختار همبستگی میان انداده‌های
مکانی مقرر باشد. برآورده نسبتاً همبستگی سازگاری زمانی ساختار و میانگین زمان خوابند و با این حال به
دلیل مختلف از جمله افزایش کارایی و کاهش میزان ارتباط برآورده‌ها انتخاب ساختار همبستگی عملی
مطابق هموار مورد نویه مقبل انتخاب است.

میاد و روش‌ها: در این مطالعه کوشیده‌ای بسته به معنی تأییدیه‌یهای MRIT2، ماتریس همبستگی، و افراد
میرک از آنها را در قالب معادلات برآورده‌یهای کاربرده روز MRIT2 می‌تواند به کار گیری انتخاب ساختار
مکانی‌های مشابه یکی از جزئی از این مطالعات باشد. در سال‌های اخیر مکانی‌های مختلف برای انتخاب ساختار همبستگی
عملی در این مطالعه به عنوان مثال، می‌توان به: MRIT2، GEE و GEE به ترتیب باصرع نتایج، بخاطر
ویژه، همبستگی یا ویژه، همبستگی می‌تواند در مقدمه کاربردی بررسی‌های MRIT2 مکانی‌های مختلف برای
نتهج‌گیری مقداری از متابولیک، مهارتی همبستگی عملی، مدل‌های ارزیابی، شبیه‌سازی، فرد و
واگذار مدل‌های ماتریس‌های داده‌های GEE یا می‌تواند با نویشه به مهارت مطالعات و مشاهدات
تکراری

E-mail: alireza.afsharisafavi@gmail.com

نوبت‌دهانه مشهد: علیرضا افشار صفوی

دانشگاه علمی-پژوهشی
دانشگاه شاهد
سال تابستانی-شماره 1/1
برای اطلاعات بیشتر، لطفاً از این آدرس اطلاع بگیرید:
E-mail: alireza.afsharisafavi@gmail.com

دانشجویی کارشناسی ارشد، آمار دانشگاه علوم پزشکی، ایران.

دریافت: 15/5/92
اخذین اصلاح: 24/7/92
پذیرش: 4/8/92

بیماران تالاسمی

دانشجویی کارشناسی ارشد، آمار دانشگاه علوم پزشکی، ایران.

دریافت: 15/5/92
اخذین اصلاح: 24/7/92
پذیرش: 4/8/92
مقایسه ماتریس‌های همبستگی عملی تحت مدل‌های چندمتغیره همبستگی با...

مدل‌های خطی اثر ثابت را می‌توان با کاربرد (5)؛ با این حال برای یک سیاست‌ریی، منشّت‌کننده(6) چندمتغیره قسمتی، بسیار از مدل‌های دست‌نمایی پیشنهاد است.

مدل‌های خصوصی خصوصی توصیف‌های (GLM)، برای پاسخ‌های همبستگی داده (8)، در این روش که به‌آید بی‌روند شیوه‌نماها است، تحقیق کامل توزیع چندمتغیره پاسخ‌های ترکیبی متغیر نازیبست و نه در گشتاور اول بردارهای پاسخ‌های (10)؛ علاوه بر این، با نشست‌های مشخص شده‌بندی نیم‌مرکز ضروری و وجود ساختر همبستگی عملی برای دست‌بیایی بر اکثریت سازگار و محقباً نرمال است (10). انتخاب این ساختر همبستگی عملی می‌تواند ضمن ارائه اثرات خیالی با کاهش این حذف ارتبی‌تر شوده بی‌باین، ناشی به‌اندازه‌بیانی، با نشست یک‌تاره‌ای استفاده از روش مکانیسم دست‌نمایی و در نتیجه، GEE ملاک‌های دقت‌ارزیابی مرتبط با آن در مدل‌های اکنون پذیرفته شده، در صورت اریجی ملاک‌های مختلف برای استفاده ساختر همبستگی عملی معرفی شده‌اند (11 و (12)). هدف از این مطالعه، مقایسه ماتریس‌های همبستگی عملی تحت مدل‌های چندمتغیره همبستگی با اندزه‌های تک‌راری بوده است: برای این منظور، اطلاعات مربوط به MRIT2* قلب و کبد بیماران تالاسیس درمان‌ها مورد پیگیری آن‌ها می‌باشد. در نتیجه، مانند MRIT2* می‌تواند به‌طور قطعی، به‌صورت این نمایش‌های درمانی که پایه‌گذاری پوشه‌های معمول در مورد نرمال رفتار دارد.
کمی انجام شده است (١٧).

مواد و روش‌ها

فرضی که در این مقاله چنین مواجهات باشد، دفعات اندک مشترک با تعداد اعداد مختلف بدن
مانند چنچ، راست (١٨)، و نواحی مختلف که بالا
و پایین (١٩) و را نشان دهید: برای هر فرد، یک متغیر
پاسخ به‌صورت y_{ij} و یک بردار $p \times 1$ از متغیرهای
$t = 1, 2, ..., m \quad i = 1, 2, ..., n$
کمکی به‌طوری که X_{ij}^T
باشند، وجود دارد. در این روش، تعداد دفعات
اندازه‌گیری مشترک می‌تواند ناپایدار باشد

$Y_i = \left(y_{i1}, y_{i2}, ..., y_{im} \right)^T$

در اینصورت

یک بردار

از پاسخ‌ها برای هر فرد و

یک متغیر

می‌باشد.

با متغیرهای کمی‌خواهی، فرض بر این است که
جفت مشترک Y_i, X_j
نوع پیکان و مستقل
توک‌شده‌اند. پاسخ مربوط به هر شخص، ممکن
است به‌صورت یک پاسخ‌های اقدام مرفوع، مستقل
فرض می‌شوند: متغیرهای کمی‌خواهی نیز می‌توانند در طول
زمان تغییر کنند با تابع میانگین.

روش

نیازمند شناسایی مدل‌های بی‌عیب، همچنین
ارتباط میان پیمان‌ها و واریانس توزیع

و

و

عملی

موئل

رول

برای اندازه‌گیری

کمی‌خواهی

برای

با استفاده از برآوردهای گسترده، مولفه مقیاس را

می‌توان به‌صورت زیر برآورد کرد:

$\phi = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} e_{ij}^2$

$R(\alpha)$

روش برآورد

با استفاده از مقایسه

میزان

$\rho_{jk} = \alpha_{jk} e_{mk}$

متأسف

رل

$R_{mk} = \alpha_{mk}

به‌وسیله

میزان

α_{mk}

به‌وسیله

α_{jk}

متأسف

به‌وسیله

α_{mk}

به‌وسیله

α_{jk}

متأسف

به‌وسیله

α_{mk}

به‌وسیله

α_{jk}
معاینات به طور کامل، ام ار دو ی با یک مسیر برای $r_{k}^{\hat{R}(AR)}$ کامل، $r_{k}^{\hat{R}(AR)}$ با مشخصات متنبک با این نظریه که در آن

در مورد M وابسته (M-DE) هر مشاهده در زمان k نمی‌باشد، $QIC(1)$، مشاهده زمان بعدی همبستگی در و سایر همبستگی‌ها

برای این (سر) در نظر گرفته می‌شود: بیان‌بیان‌یار β آیا از α_{jk} به ارائه β_{jk} یک مسیر را در مسیره‌های همبستگی

عملی مختلف می‌باشد محاسبات زیر را نتایج کرد.

برای ارائه $\hat{\beta}$ همبستگی عملی $\hat{\beta}$ مانند:

در مورد M وابسته (M-DE)

برای ارائه $\hat{\beta}$ همبستگی عملی $\hat{\beta}$ مانند:

در مورد M وابسته (M-DE)

برای ارائه $\hat{\beta}$ همبستگی عملی $\hat{\beta}$ مانند:

در مورد M وابسته (M-DE)

برای ارائه $\hat{\beta}$ همبستگی عملی $\hat{\beta}$ مانند:

در مورد M وابسته (M-DE)
بودن در بررسی؛ در مجموع، 11 بیمار ناسالم، اندامه نرگزاری پایه تمولگر گردیدند. وی این مدل MRIT2* که بودن که هرکی، دو مربی اندامه گیری شود، بیمار مدتی در این مدل، بیمار نوین همبستگی میان اضافه ی آهن قلب و یکی ی به دور جال متریگرها، کمک شما سطح یکی نوید رضایتگی در جنگل شرتو، MRI، ساخته شده، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI， MRI، MRI， MRI، MRI， MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI， MRI، MRI، MRI، MRI， MRI， MRI， MRI، MRI، MRI، MRI， MRI، MRI， MRI، MRI， MRI، MRI، MRI， MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI， MRI، MRI، MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI， MRI， MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI، MRI， MRI， MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI， MRI، MRI، MRI، MRI， MRI， MRI، MRI، MRI، MRI， MRI، MRI， MRI، MRI، MRI، MRI， MRI، MRI، MRI، MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI， MRI، MRI， MRI، MRI، MRI، MRI， MRI، MRI， MRI， MRI， MRI، MRI، MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI، MRI， MRI، MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI， MRI، MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI، MRI， MRI، MRI، MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI، MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI، MRI، MRI، MRI، MRI، MRI， MRI، MRI، MRI， MRI， MRI， MRI， MRI، MRI， MRI، MRI， MRI، MRI، MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI، MRI، MRI، MRI， MRI، MRI， MRI، MRI، MRI， MRI، MRI، MRI， MRI، MRI، MRI، MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI، MRI， MRI، MRI， MRI، MRI， MRI， MRI， MRI， MRI، MRI， MRI، MRI， MRI، MRI، MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI， MRI، MRI， MRI، MRI， MRI، MRI， MRI، MRI， MRI، MRI، MRI， MRI، MRI، MRI， MRI， MRI， MRI， MRI， MRI， MRI، MRI， MRI، MRI， MRI,
جدول ۲. مقایسه ماتریس همبستگی عملي تبادل

<table>
<thead>
<tr>
<th></th>
<th>EX</th>
<th>MRIT2*</th>
<th>قلب</th>
<th>کید</th>
<th>MRIT2*</th>
<th>قلب</th>
<th>کید</th>
</tr>
</thead>
<tbody>
<tr>
<td>قلب</td>
<td>۱</td>
<td>۱</td>
<td>۲</td>
<td>۲</td>
<td>۱</td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td>کید</td>
<td>۲</td>
<td>۲</td>
<td>۱</td>
<td>۱</td>
<td>۲</td>
<td>۲</td>
<td>۲</td>
</tr>
</tbody>
</table>

جدول ۳. مقایسه همبستگی عملی بن‌ساختار

<table>
<thead>
<tr>
<th></th>
<th>UN</th>
<th>MRIT2*</th>
<th>قلب</th>
<th>کید</th>
<th>MRIT2*</th>
<th>قلب</th>
<th>کید</th>
</tr>
</thead>
<tbody>
<tr>
<td>قلب</td>
<td>۳</td>
<td>۳</td>
<td>۱</td>
<td>۱</td>
<td>۳</td>
<td>۳</td>
<td>۱</td>
</tr>
<tr>
<td>کید</td>
<td>۱</td>
<td>۱</td>
<td>۳</td>
<td>۳</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
</tbody>
</table>

جدول ۴. مقایسه همبستگی عملی انورگرسيو نرتبه اول

<table>
<thead>
<tr>
<th></th>
<th>AR(1)</th>
<th>MRIT2*</th>
<th>قلب</th>
<th>کید</th>
<th>MRIT2*</th>
<th>قلب</th>
<th>کید</th>
</tr>
</thead>
<tbody>
<tr>
<td>قلب</td>
<td>۲</td>
<td>۲</td>
<td>۱</td>
<td>۱</td>
<td>۲</td>
<td>۲</td>
<td>۱</td>
</tr>
<tr>
<td>کید</td>
<td>۱</td>
<td>۱</td>
<td>۲</td>
<td>۲</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
</tbody>
</table>

جدول ۵. مقایسه همبستگی عملی M-واپسینه(M=2)

<table>
<thead>
<tr>
<th></th>
<th>2-DE</th>
<th>MRIT2*</th>
<th>قلب</th>
<th>کید</th>
<th>MRIT2*</th>
<th>قلب</th>
<th>کید</th>
</tr>
</thead>
<tbody>
<tr>
<td>قلب</td>
<td>۲</td>
<td>۲</td>
<td>۱</td>
<td>۱</td>
<td>۲</td>
<td>۲</td>
<td>۱</td>
</tr>
<tr>
<td>کید</td>
<td>۱</td>
<td>۱</td>
<td>۲</td>
<td>۲</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
</tr>
</tbody>
</table>

پسساده نتایج این جدول، ملاک ۲-DE ساختار EX نرمال QIC ساختار UN و دو ملاک RJ1 و RJ2 ساختار CIC را به‌عنوان ساختار همبستگی عملی مناسب می‌داند.
براساس نتایج این جدول، ملاک ۲-DE ساختار EX نرمال QIC ساختار UN و دو ملاک RJ1 و RJ2 ساختار CIC را به‌عنوان ساختار همبستگی عملی مناسب می‌داند.
بحث
هدف این مطالعه، انجام مقایسه‌ای میان ساختارهای همبستگی عملی در مطالعات طولی با چند متغیر باخ است. همبستگی بود. انتخاب مناسب ماتریس همبستگی عملی به سه دلیل اهمیت دارد: اول اینکه خاصیت نرمالیتی برآورده و ارزانسایی، نمایش دهنده انتخاب نشان می‌دهد که ماتریس همبستگی عملی یک خاصیت معنی‌دار است و نمی‌توان آن را در نمای موفقیت‌ها دنیا نگرفت.

نمونه‌برداری از (n) نمونه که انتزاع داده‌گیری از طریق تفاصل زمانی یکسان گردیده، مناسب است. است. در این مطالعه با یک نمونه انتخاب از این مطالعه و یک نمونه از دویل انتخاب این ساختار دانست.

استفاده از همبستگی بی‌ساختار، نشان دهنده حجم متوالیه (m) پرای یک برآورد 0.5 مولفه به اندازه کافی بر ذوب مورد توجه است: در غرباین صورت، برآورد این ساختار می‌تواند بیشتر باشد. وقتی داده‌های طولی پر بحث چند، نتیجه‌های این محقق از دویل انتخاب این ساختار که استفاده از همبستگی صرفجو، مطلب‌تر است.

در نمونه‌های با حجم کم، یک ساختار صرفجو بدون مولفه با یک مولفه بهتر تریج داده‌می‌شود. زیرا مولفه‌های م nguyện ضدی می‌توانند دقیق برآورد را بهبود بی‌پایان در می‌آیند.

لیکن و همکاران در یک مطالعه شیمی‌سازی با دانشکه برآوردگرهای اپارسیو تحت همبستگی عملی مستقل با مواردی، مشابه بودند که تحت ساختار همبستگی قرار گرفتند. گره فقدان کارایی، چندان درخور نمی‌بود (22): از طرف دیگر، این روش‌های و همچنین واگن و کری نشان دادند که فقدان کارایی همبستگی عملی انتخاب شد.

یک برآوردگری ساختار همبستگی اطلاع‌رسان مربوط یک این است که با اندازای جدید میان جفت انتزاعی نتایج که اساسی همبستگی با سرعت کافی می‌یابد.

جدول ۶. بررسی کفایت مدل تحت ساختارهای همبستگی عملی در مطالعات مختلف

<table>
<thead>
<tr>
<th></th>
<th>Independent</th>
<th>Exchangeable</th>
<th>Unstructured</th>
<th>AR(1)</th>
<th>2-dependent</th>
</tr>
</thead>
<tbody>
<tr>
<td>QIC</td>
<td>12/39</td>
<td>10/47</td>
<td>10/49</td>
<td>8/50</td>
<td>9/49</td>
</tr>
<tr>
<td>CIC</td>
<td>12/39</td>
<td>10/47</td>
<td>10/49</td>
<td>8/50</td>
<td>9/49</td>
</tr>
<tr>
<td>RJ1</td>
<td>12/39</td>
<td>10/47</td>
<td>10/49</td>
<td>8/50</td>
<td>9/49</td>
</tr>
<tr>
<td>RJ2</td>
<td>12/39</td>
<td>10/47</td>
<td>10/49</td>
<td>8/50</td>
<td>9/49</td>
</tr>
</tbody>
</table>

(*) $\alpha_1 = \alpha_2 = \alpha^2 = \ldots = \alpha_m = \rho^m$
A Caveat concerning independence estimating equations with multivariate binary data.

Comparison of working correlation matrices in correlated multivariate models with repeated measures: Application to MRIT2* of the cardiac and liver of thalassemic patients

Amir Hossein Hashemian1, Alireza Afshari Safavi2*, Mansour Rezaei1, Zahra Badiee3

1. Assistant Professor- Department of Biostatistics, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
2. Biostatistics Graduate Student - Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
3. Department of Pediatric Hematology, Dr. Sheikh Medical Center, Mashhad University of Medical Sciences, Mashhad, Iran.

E-mail: alireza.afsharisa@gmail.com

Abstract:

Background and Objective: Generalized estimating equations are very common and popular in application correlated data and especially in longitudinal studies. However, despite the misspecification correlation structure between repeated measures of response variable, the estimation of the regression coefficients compatible will be asymptotic normal and consistent, however, for various reasons, such as increasing efficiency and reducing bias estimates, the selection of the appropriate correlation structure is very important for researchers.

Materials and Methods: In this study, we introduced the working correlation structure and we try to showing the performance of each of them in a practical example on MRIT2* in patients with thalassemia. Choosing the true correlation structure needs measurement criteria that be coordinated in order to the quasi-likelihood. In recent years, several criteria have been proposed for the selection of appropriate structure. In this study, we also introduce the efficacy of these criteria in the selection of the true correlation structure.

Results: In this study, the appropriate correlation between cardiac and liver iron overload in two time points according to the QIC, CIC, RJ1 and RJ2 are respectively the exchangeable, unstructured and 2-dependent.

Conclusion: In the GEE models, the evaluation criteria should be selected according to the nature of the studies and observations.

Key words: Generalized estimating equations, Working correlation matrix, Evaluation criteria, Quasi-likelihood, Thalassemia