بررسی تأثیر خشونت سطحی اباتم‌های سمان شونده متکی بر ایمپلنت با سمان موتجی

نویسنده‌گان: سید شجاع الدین شایخ، محسن سالاری، محسن ایبی

1- دانش‌گاه دانشگاه امام حسن (ع) اردبیل، دانشکده دندانپزشکی دانشگاه اردبیل، تهران، ایران
2- دانش‌گاه دانشگاه امام حسن (ع) اردبیل، دانشکده دندانپزشکی دانشگاه اردبیل، تهران، ایران
3- دانش‌گاه دانشگاه امام حسن (ع) اردبیل، دانشکده دندانپزشکی دانشگاه اردبیل، تهران، ایران

E-mail: Ayoubi.mohsen@yahoo.com

چکیده

مقدمه و هدف: خشونت سطحی با ایجاد کیر میکرو مکانیکال می‌تواند باعث افزایش گیر رستوریشن‌های سمان شونده شود. از این رو، بررسی تأثیر خشونت سطحی بر استحکام گیر رستوریشن‌های سمان شونده می‌تواند اهمیتی داشته باشد.

مواد و روش‌ها: در این مطالعه سه عدد اباتم‌های DIO - Cemented abutment, SAC 4814(N)II و Base با کرده کری خشونت میکرو مکانیکال می‌تواند باعث افزایش گیر رستوریشن‌های سمات شونده شود. استحکام گیر رستوریشن‌های سمات شونده با استفاده از Tuke test و Way ANOVA تست شد.

نتایج: اختلاف معناداری بین سطوح سمن‌بدیا کری و کرده با دقت کلمه با سطح SAC 4814(N)II می‌تواند باعث افزایش استحکام گیر رستوریشن‌های سمات شونده شود.

توجه کنید، عمل سمن‌بدیا کری در کاربرد اباتم‌های سمن برای انعقاد نامناسب است.

واژگان کلیدی: اباتم‌های سمان موتفی، سمن‌بدیا کری، اباتم‌های سمان شونده.
مقدمه
امروز ایمپلنت‌های دندانی به‌عنوان درمان مناسب برای چانگین‌ترین دندان‌ها ازدست رفته مورد استفاده قرار می‌گیرند (۱). میزان گیر پروتزهای ثابت منکی بر ایمپلنت‌ها یکی از مهم‌ترین فاکتورهای مؤثیر آل در استراتیژی‌های آن است (۲).

به منظور اتصال پروتزهای ثابت منکی بر ایمپلنت از دو روش سانشانده و پیچ‌سونده استفاده می‌شود (۳). اما وجود هفته‌ای در پروتزهای پیچ‌سونده می‌تواند الکلوز، استحکام پرست و زیبایی را به مشکل دچار کند. همچنین یکی دیگر از مشکلات پروتزهای پیچ passive می‌باشد که عدم تایید اطلاعات و تغییرات ایمپلنت در حالت رها و بازیابی ایمپلنت در حالت بارگذاری است (۴). اجزم شاپ‌های مفصل ایمپلنت باعث استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول زمان استحکام ایمپلنت‌ها و پیچ‌سوندهای استحکام پروتزهای ثابت منکی بر ایمپلنت است که این امر باعث می‌شود که در طول.Zaman واردکردن بر تو یگن یشگان استفاده می‌کند. ۲۰
مورد ارزیابی فرآیند مستندیت (10 و 11): همچنین، انتخاب سمان موقتی مناسب که آنان اکسید آلومینیوم، پروتزهای موقتی و ادامه را روی ایمپلنت تایم کن و موجب شدن زودهنگام پروتز نشود، چالیش بزرگ به‌منظور رسید.

هدف مطالعه حاضر بررسی استحکام سمان موقتی با توجه به سه نوع خصوصیات (Temp bond kerr) سطحی مشاوی ایمپلنت به‌منظور استفاده در سندیکالاست-شده با 25 میکرون اکسید آلومینیوم، سندیکالاست-شده با 50 میکرون، روی میزان گیر مستندیت سه سمان‌شوینده منطقه ایمپلنت است.

روش بررسی
این مطالعه تجربی به روش آزمایشگاهی روی سیمنت ImplantCemented عدد ایمپلنت از سیمنت Cemented با طول 5/5 میلی‌متر و به قطر 6/8 میلی‌متر انجام‌شده است. اندازه‌بندی این ایمپلنت با سه گره دو-بابی ایمپلنت‌ها به‌طور هم‌زمان در دو مدت زمان 15 و 30 ثانیه و با کاهش شتاب ولتاژ و فشار از 120 با بار در 10 میلی‌متر سندیکالاست-شده در ادامه ایمپلنت (SM-submerged، Analoge، FAF451) همچنین با طول 25 میکرون، گره سوم با ذات اکسید آلومینیوم 50 میکرون در مدت زمان 15 و 30 ثانیه و با کاهش شتاب ولتاژ و فشار از 25 با بار در 10 میلی‌متر سندیکالاست-شده در ادامه ایمپلنت (IM-submerged، Analoge، FAF451) روزیت به‌طور همزمان 200 و 250 میلی‌متر مانند شده. گره سوم با ذات اکسید آلومینیوم 50 میکرون در مدت زمان 15 و 30 ثانیه و با کاهش شتاب ولتاژ و فشار از 25 با بار در 10 میلی‌متر سندیکالاست-شده در ادامه ایمپلنت (SAP: 4810(II)) روزیت به‌طور همزمان 200 و 250 میلی‌متر مانند شده.

در این ایمپلنت، قراردادن سیمان روی ایمپلنت‌ها و استحکام این گیر شدکه کاملاً، یک حلقه مومی با استفاده از موم اینه (polywax-wire hard) روی کوپنگ پلاستیکی قرم داده- (universal plastic coping، به شکل سیم مشوی شده) در ایمپلنت از سیمنت دیویل (Implant-DIO) به‌طور همزمان تهیه شد. پس از قراردادن سیمان روی ایمپلنت‌ها و اطمینان از نشست کامل آن، یک حلقه مومی با استفاده از موم اینه روی کوپنگ پلاستیکی قرم داده- (universal plastic coping، به شکل سیم مشوی شده) در ایمپلنت از سیمنت دیویل (Implant-DIO) به‌طور همزمان تهیه شد. پس از قراردادن سیمان روی ایمپلنت‌ها و اطمینان از نشست کامل آن، یک حلقه مومی با استفاده از موم اینه روی کوپنگ پلاستیکی قرم داده- (universal plastic coping، به شکل سیم مشوی شده) در ایمپلنت از سیمنت دیویل (Implant-DIO) به‌طور همزمان تهیه شد. پس از قراردادن سیمان روی ایمپلنت‌ها و اطمینان از نشست کامل آن، یک حلقه مومی با استفاده از موم اینه روی کوپنگ پلاستیکی قرم داده.
یک نظر انجام مقاله‌ای در مورد بررسی تأثیر مکانیک و شکل‌گیری سطحی ابزارهای زیر کارگرفته شد (19).

1. چندان‌دگی در اینترفیس ابزارهای موجود است
2. چندان‌دگی در ابزارهای موجود است
3. چندان‌دگی در ابزارهای موجود است

اکثر ابزارها، به ترتیب از لحاظ آماری معنادار است (One way ANOVA).

نتایج

میزان استحکام گیر در ابزارهای موجود مطابعه در جدول 1. اورده‌شده و تاکنون میزان اگره کریگیده که ابزار گیر کوبینگ-های فلزی در گروه‌های مختلف مشابه به دو آزمون نشان داد از لحاظ آماری معنادار است (p<0.001). در مقایسه میزان سپر کوبینگ ابزارهای ابزارهای های کربن‌دار بیشترین میزان گیر ابزارهای ابزارهای ابزارهای 30 میکرون. استفاده‌های سپر کوبینگ با ذرات اکسید آلومینوم 45 میکرون، ابزارهای سپر کوبینگ با ذرات اکسید آلومینوم 6 میکرون.
جهت

جدول ۱. شاخص‌های آماری میزان استحکام گیر در گروه‌های مختلف

<table>
<thead>
<tr>
<th>نوع سمن</th>
<th>نوع ابستنمت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰ میکرون</td>
<td>۱۰۴/۲۴(^{±})</td>
</tr>
<tr>
<td>۲۵ میکرون</td>
<td>۱۰۰/۲۴(^{±})</td>
</tr>
<tr>
<td>پژیشی دارش/ پژیشی دارش</td>
<td>۵۰/۲۴/۱۰۴(^{±})</td>
</tr>
<tr>
<td>تحقیق ۱۷۱۱</td>
<td>تحقیق ۱۷۱۱</td>
</tr>
</tbody>
</table>

* Danehvar Med Shahr Ed. ۲۰۱۸*
الگوی شکست، ارتباطی کلیدیکی با مدت زمان لازم برای تمیزکردن سمان باقی مانده روي اباتمانت درون دهان بیمار با درون کوپینگ فلزی دارد که از این جهت اهمیت دارد (9). در این مطالعه، پیشترین میزان الگوی شکست در سمان پوست مخابک Kerr و باقی ماندن سمان روی کوپینگ فلزی بود. در مطالعه نهجای دانش اثر این مکانیزم در سال 2012، الگوی شکست برای سمان و باقی ماندن سمان روی اباتمانت گزارش کرد که با نتایج این تحقیق متفاوت بود (7). در مطالعه کونستانتینوس و همکارانش در سال 2007، الگوی شکست سمان را به صورت Adhesive و Cohesive باقی ماندن سمان روی اباتمانت و کوپینگ فلزی گزارش کردند که در مطالعه این مطالعه، تفاوت داشت که به دلیل ان شرایط آزمایشگاهی متفاوت این دو مطالعه بوده است (10).

نتیجه‌گیری
با توجه به محدودیت‌های این مطالعه، نتایج زیر قابل اشاره‌اند:
1. پیشترین میزان استحکام سمان در خصوص Kerr در خصوص اباتمانت‌های سندبلاست‌شده با ذرات اکسید آلومینیوم ۵۰ میکرون بود.
2. سندبلاست‌کردن سطح اباتمانت، باعث افزایش میزان گیر شده و روشی مناسب برای افزایش میزان گیر در سمان‌های موشی است.

1. Nejatidanesh
2. Konstantinos
References


The effect of abutment surface roughness on the retention of implant-supported crowns cemented with provisional luting cement

Seyed Shojaeddin Shaegh¹, Alimohammad Salari ², Mohsen Ayoubi³

1. Associate Professor- Department of Prosthodontics, Dental Faculty, Shahed University, Tehran, Iran.
2. Assistant Professor- Department of Prosthodontics, Shahed University, Tehran, Iran.
3. Resident of Prosthodontics- Department of Prosthodontics, Shahed University, Tehran, Iran.

E-mail: ayoubi.mohsen@yahoo.com

Abstract

Background and Objective: Surface roughness can increase the retention of castings by sandblast that are micro retentive. This study compared the retention of implant-supported crowns when used with 3 different surface roughness abutments and one temporary cement.

Materials and Methods: Thirty abutments (DIO implant-cemented abutment, SAC 4814N(II)) were divided in three groups. First group was standard machine surface, second group sandblasted with 25 micron aluminum oxide particles and third group was sandblasted with 50 micron particles. Then, regular diameter implant analogs were embedded in resin acrylic block and provisional cement Kerr Temp bond NE was used for cementation. 90 metal coping were fabricated and after cementation the aging processing was done. Then, the retentive strength was tested with universal testing machine at cross head speed of 0.5 mm/min. Results were analyzed using One way ANOVA and Tukey's test.

Results: Retentive strength of temp bond kerr with 50 micro sanbblasted abutment was statistically different than two other groups (p<0.001). Between all the groups, standard abutment was the weakest.

Conclusion: Surface modification of implant abutment by sandblast may be an effective method to increase retention of crown when provisional luting cement is used.

Key Words: Dental implant, Abutment, Sanbblast, Retention, Abutment.