برآورد دوزهای هدف با استفاده از روش MCPMod

نویسنده‌گان: دکتر علیرضا گردارآوردی باغیان، دکتر حمید علی‌محمدی

چکیده

مقدمه و هدف: تعيين مدل مناسب و درنهايت برآورد دوزهای دقیق از هداف کليدي در مطالعات دوز-پاسخ است. روش MCPMod رويي شدسته كه به استفاده از مدل مناسب و براورد دوزهای هدف استفاده مي‌شود و تحتوي روش‌های موجود را تدارک دارد. اين روش، انتخاب مدل برمندی آزمون فرصتی در مدل مناسب و با توجه به هدف از مدل مناسب مطالعات دوز-پاسخ که افراشيپ دو مرحله‌ای با پاسخ همگاني مي‌باشد، درنهايت نشان مي‌دهد. هدف اين مطالعه، تعیین مجموعه مدل‌های مناسب با استفاده از روش MCPMod و براورد میانه و بيشترين دوز MCPMod مؤثر در داروي انتي‌ساساسي است.

مواد و روش‌ها: در این تحقیق، 7 دوز دروی آنتي‌ساساسيک و در هر دوز ده خوکچه هندی بررسی شدند. همچنین از آماره T_2 برای انتخاب مدل استفاده شد و پنج مدل خطي، يك خطي، نمائي و پارابولائي برای پروتئين ها به دستگاه MCPMod درنهايت براورد مي‌کرد. روش MCPMod میانه و بيشترين دوز موثر، از روش MCPMod انتخاب و تحليل داده‌ها به كمک نرم‌افزار R انجام شد.

پایه‌گذارته: در تمام مدلها آزمون فرض معنادار شد و آماره T_2 بيشترين از مقدار مينا T_2 بود ($0.01/0.01/0.01/0.01$). بيشترين آماره T_2 مربوط به مدل يك خطي، يك خطي، نمائي و پارابولائي با پرمتر برآورده $0.01/0.01/0.01/0.01$ میانه دوز موثر 170 و بيشترين دوز موثر $0.01/0.01/0.01/0.01$ برآورده.

نتيجه‌گيری: يا توجه به اندازه‌بنديرون روش MCPMod، منظور می‌رسي كه اين روش برای انتخاب مدل و درنهايت براورد دوزهاي هدف در مطالعات دوز-پاسخ، روشي مي‌باشد.

واژگان کليدي: مياanske، دوز موثر، بيشترين [پسيترين، بالاترين] دوز موثر، ميدندي، دوز-پاسخ، مقابليت، انجام.
مقدمه

تعیین مدل مناسب و پردازش دوزهای هدف با دقت بالا از اهداف مهم در مطالعات دوز-پاسخ ستند: یک دو جا، یا ملی توان مدل ها، به شکلی که به دلیل دو روش نیاز ممکن است کارایی و ارزش واریز زیادی نداشته باشد.

پایگاه مقالات، تحلیل داده‌ها در مطالعات دوز-پاسخ، اغلب به دو دسته تقسیم‌شود: روش مقایسه‌ای، چندگانه و روش مدل‌بندی در روش مقایسه‌ای چندگانه دو در مقایسه ترکیبی به‌صورت مشترک دو و یا چند روش انتخاب مدل درردهای دوز و مدل‌بندی آزمایش‌گیرنده شده، اما به‌طور تفسیر ساده و کاربردی، فقط تعادل محدودی در رده‌بندی می‌گردد و در مورد دو روش و روند دوز-پاسخ اطلاعاتی به دست می‌آید.

در روش مدل‌بندی نیز یک مدل یا بارماری به دامنه برای مدل و دوز در جایگاه متغیری کمی درنظر گرفته می‌شود: در این روش به‌طور کلی، یک مدل به عنوان بهترین مدل انتخاب می‌شود و در نهایت دوزهای هدف برآورده می‌شوند: اما این روش نیز محصولاتی دارد. اغلب برای مقایسه دو مدل انتخاب بهترین مدل از معيارهای مختلف استفاده می‌شود. ضریب تعیین (R^2)، معيار اطلاع اکانیک و معيار اطلاع بيزا جزو پارامترهای آنها هستند.

استفاده از این معيارها درنهایت به انتخاب یک مدل منجر می‌شود که در بین مدل‌های موجود به عنوان بهترین مدل درنگرفته شود و بقیه مدل‌ها کارگذاری نمی‌کنند. می‌شوند. یکی از مدل‌هایی که در انتخاب مدل باشد به آن توجه کرد. عدم تعیین مدل ۴ است. اگر مدل انتخابی، مدلی مناسب باشد در پردازش دوزهای هدف به ارتباط دارای می‌باشد، از طرف دیگر هیچ یک از این معيارها فرض افزایش بودن میانگین پاسخ‌ها ۴- Bretz et al
5- Multiple Comparison
6- Median effective dose (ED$_{50}$)

1- AIC
2- BIC
3- Model Uncertainty
ظرف تیپ محلول‌های داروئی

ابتدا یک محلول غلیظ اولیه به غلظت 10^{-2} مولار از مشتقات تیز کرده و به عنوان حل برای استفاده‌شدن می‌باشد. سپس بقیه رفته از 10^{-3} تا 10^{-8} در آن تیپ‌های مورد حفظ داشته، این غلظت‌ها درون حمام باید 100 برای رفیق شود.

بعد از تریکل KCl به داخل حمام باید. انقباض ایدولوم به ترانسیبرود منتقل شود و توسط ثابت ریو کافه مخصوص تیپ‌گردد. سرعت حرکت کافه 100 سانتی متر در ثانیه بود. سپس محلول مشتقات مورد آزمایش که درگذشته تیپ‌شده‌بود به صورت تجییب انواع تیپ‌شده، حالت شیء در عضله متضیف شده تیپ‌شده (7).

تجزیه و حل آماده

یکی از روش‌هایی که برای انتخاب مدل و برورود MCPMod از مدل‌های بازرسی برخوردار است که در این تحقیق با استفاده‌شده‌بودند. در این روش برای هر مدل از مدل‌های متغیری در نظر گرفته می‌شود: مدل یکسایی مدل مورد نظر مناسب نیست و فرض مقابل بدین معنی است که مدل انتخابی مناسب است و می‌توانند روند پاسخ‌ها را به‌خوبی تشریح کنند (3).

فرض کردیم که دوز آزمایش باشد و m_i مشاهده و جوهرداده و v_i می‌باشد در هر دوز آزمایش k_i پاسخ در دوز‌های آزمایش باشد که به صورت زیر تعیین می‌شود:

$$Y_{ij} = f(d_i, \theta) + \varepsilon_{ij}$$

$$f(d_i, \theta) = \theta_0 + \theta f^0(d_i, \theta)$$

به تابع استاندارد گنگشته‌گر می‌باشد و از این برای ساخت مدلی استفاده می‌گردد. مدل کنونی مجموعه‌ای از مدل‌های در اختیار داده شده و تابع پاسخ برای M

$$\varepsilon_{ij} \sim N(0, \sigma^2)$$

مدلی است که رابطه دوز-پاسخ را بیان می‌کند و اغلب به صورت زیر به‌شکل می‌باشد:

$$f(d_i, \theta)$$

θ_0 بهداشت استاندارد گنگشته‌گر می‌باشد و از این برای ساخت مدل‌رنگنگ‌گر می‌باشد. مدل کنونی مجموعه‌ای از مدل‌های در اختیار داده شده و تابع پاسخ برای M
(7) \[f(d, \theta) = E_0 + E_1 \exp(d / \delta) \]

 مدلهای مختلف به فرم \(f_m(d, \theta_m) \) باشد \(m = 1, \ldots, M \)

 و در مطالعات دوز-پاسخ اغلب، مدلهای خطی

 ایماکس، لگ خطی، لجستیک و نمایی به دادها برایش داده‌می‌شود. مدله خطی ساده‌ترین مدله دوز-پاسخ است. اما کاربردی‌ترین داده‌داران (9-11) این مدله که در رابطه 3 بیان‌شده است دارای یک پارامتر \(E_0 \) و \(\theta \) که اثر پایه و \(\delta \) نشان دهنده شبک خط است.

(3) \[f(d, \theta) = E_0 + \delta d \]

 برخی مواقع به جای دوز از نگارنده‌ی آن استفاده می‌شود که در این صورت مدل لگ خطی دوز-پاسخ حاصل می‌شود (رابطه (4))

(4) \[f(d, \theta) = E_0 + \delta \log(d) \]

 دو مدل که نسبت به مدل‌های خطی و لگ خطی دوز-پاسخ پیچیده‌ترند و می‌توان با استفاده از آن‌ها پارامترهای بیشتری را پراورده کند، مدل لجستیک دوز-پاسخ و مدل ایماکس است.

(5) \[f(d, \theta) = E_0 + E_{\text{max}} d / (ED_{50} + d) \]

 مدلهای ایماکس (رابطه (5) دارای سه پارامتر \(E_0 \) معرف اثر پایه، \(E_{\text{max}} \) مقدار مکانیم تغییر نشته است و \(ED_{50} \) مقدار پایه و \(E_{\text{max}} \) است که در 50 درصد از مکانیم تغییرهای اتفاقی وارد می‌شود. مدل لجستیک در این پارامتر نیز هست که نشان دهنده در نخ تغییرهای است. این مدل در رابطه 6 آمده‌است:

(6) \[f(d, \theta) = E_0 + E_{\text{max}} / \left(1 + \exp \left[\frac{(ED_{50} - d)}{\delta} \right] \right) \]

 به عنوان نتیجه محاسبه دوز-پاسخ استفاده می‌شود. ی نمایی است که به صورت زیر بیان می‌شود:

\[
\begin{align*}
\theta' &= \left(\mu_{m1}^0, \ldots, \mu_{mk}^0 \right) \\
\mu_{m1}^0 &= \left(f_m^0(d_1, \theta_m^0), \ldots, f_m^0(d_k, \theta_m^0) \right) \\
\theta &= N^{-1} \sum_{i=1}^{k} \mu_{mi}^0 n_i
\end{align*}
\]
دکتر علیرضا اکبرزاده باغیان و همکاران

(15) \[\omega_l = \frac{t_{la}^2}{\sum_{j=1}^{L} e_j^2}, \quad l = 1, \ldots, L \]

مدلی که مقدار آماره

برای درد هر دسته به خود اختصاص می‌یابد، برای داده‌ای یک داده مدلی که همان یک داده در هر دسته‌ای مدلی را می‌باشد، در این حالت

از روش ترم‌افزار MCPmod باید نتایج داده‌ها استفاده شود (14 هر).

یافته‌ها

در روش MCPMod مدل‌هایی انتخاب می‌شوند که پنج‌دسته روند دوز به‌پایه را تشخیص داده‌اند. برای محاسبه

آماره آماره

در مدل‌های مختلف، ابتدا ضرایب مقاله

محاسبه شدن که مقدار آنها در جدول شماره 1 آمده است.

جدول شماره 1: ضرایب مقاله در مدل‌های مختلف

<table>
<thead>
<tr>
<th>ضرایب مقاله</th>
<th>خالی</th>
<th>شبه تا 0</th>
<th>-1/2</th>
<th>-1/4</th>
<th>-1/8</th>
<th>-1/16</th>
<th>-1/32</th>
<th>-1/64</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/32</td>
<td></td>
<td>0/32</td>
<td>-1/64</td>
<td>-1/32</td>
<td>-1/64</td>
<td>0/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/64</td>
<td></td>
<td>-1/32</td>
<td>-1/64</td>
<td>0/32</td>
<td>-1/64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/32</td>
<td></td>
<td>-1/64</td>
<td>0/32</td>
<td>-1/64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/16</td>
<td></td>
<td>-1/32</td>
<td>-1/64</td>
<td>0/32</td>
<td>-1/64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/64</td>
<td></td>
<td>-1/32</td>
<td>0/64</td>
<td>-1/32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/8</td>
<td></td>
<td>-1/16</td>
<td>-1/32</td>
<td>-1/16</td>
<td>0/64</td>
<td>-1/32</td>
<td>-1/64</td>
<td>-1/32</td>
</tr>
<tr>
<td>0/128</td>
<td></td>
<td>-1/32</td>
<td>0/64</td>
<td>-1/32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td></td>
<td>-1/8</td>
<td>-1/16</td>
<td>-1/8</td>
<td>0/32</td>
<td>-1/8</td>
<td>-1/16</td>
<td>-1/8</td>
</tr>
<tr>
<td>0/256</td>
<td></td>
<td>-1/8</td>
<td>0/16</td>
<td>-1/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td>-1/4</td>
<td>-1/8</td>
<td>-1/4</td>
<td>0/16</td>
<td>-1/4</td>
<td>-1/8</td>
<td>-1/4</td>
</tr>
<tr>
<td>0/512</td>
<td></td>
<td>-1/4</td>
<td>0/8</td>
<td>-1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
جدول شماره ۳: مقدار آماره Tm

<table>
<thead>
<tr>
<th>مدل</th>
<th>پارامتر اصلی</th>
<th>پارامتر حذفی</th>
<th>پارامتر دوم حذفی</th>
<th>پارامتر سوم حذفی</th>
<th>پارامتر چهارم حذفی</th>
<th>پارامتر پنجم حذفی</th>
<th>پارامتر ششم حذفی</th>
<th>پارامتر هفتم حذفی</th>
<th>پارامتر نهم حذفی</th>
<th>پارامتر دهم حذفی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰/۱۰</td>
<td>۱/۷/۱۰</td>
<td>۱/۷/۱۰</td>
<td>۱/۷/۱۰</td>
<td>۱/۷/۱۰</td>
<td>۱/۷/۱۰</td>
<td>۱/۷/۱۰</td>
<td>۱/۷/۱۰</td>
<td>۱/۷/۱۰</td>
<td>۱/۷/۱۰</td>
</tr>
<tr>
<td>۲</td>
<td>۰/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
</tr>
<tr>
<td>۳</td>
<td>۰/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
</tr>
<tr>
<td>۴</td>
<td>۰/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
<td>۲/۷/۱۰</td>
</tr>
</tbody>
</table>

طبق جدول شماره ۳، در تمام مدل‌ها مقدار آماره Tm بزرگ‌تر از مقدار مناسب که این مقدار به‌کاری برای استفاده از توزیع N چند شده‌بود و خطای نوع اول از ۰/۰۵ پرینی با ۰/۰۱ است. این جدول نشان می‌دهد که میانه و بالاترین دوز مؤثر با یک استفاده از این مدل به‌ترتیب ۱۹۳/۱۳ و ۱/۹۳ پرورده‌شدند.

به‌منظور استفاده در پیش‌بینی میانه و حداکثر دوز مؤثر با استفاده از روش ترکیب مدل‌ها پرینی ۱۹۳/۱۳ پرورده‌شدند.

درست در زمینه مطالعه تئوری به‌کار گرفته شده‌است. میانه و بالاترین دوز مؤثر با یک استفاده از این مدل به‌ترتیب ۱۹۳/۱۳ و ۱/۹۳ پرورده‌شدند.

مورد مورد استفاده از روش ترکیب مدل‌ها پرینی ۱۹۳/۱۳ پرورده‌شدند.

بررسی و همکاران، نیز در این زمینه مطالعه می‌کنند.

به‌منظور استفاده از روش ترکیب مدل‌ها پرینی ۱۹۳/۱۳ پرورده‌شدند.
دکتر علیرضا اکبرزاده پایان و همکاران

جایگی کمتر این ترکیب نسبت به نیف‌پییکن، قدرت آن نیز
1/5 برابر قدرت نیف‌پییکن بود (7).

استفاده از روش MCPMod می‌تواند افزایش توان مطالعه در تعیین وجود رابطه دوز-پاسخ را سبب شود؛ همچنین این روش می‌تواند علاوه بر طرح‌های در طرح‌های دیگر نیز مورد استفاده قرار گیرد که بررسی این موضوع‌ها برای مطالعات آینده پیشنهادی شود.

نتیجه‌گیری

با توجه به انعطاف‌پذیری‌های روش MCPMod، به نظر می‌رسد که این روش برای انتخاب مدل و در نهایت برآوردن دقیق دوز‌های هدف‌ریز شده مناسب و کارا باشد.

تشکر و قدردانی

این مقاله حاصل یک طرح پژوهشی است که با حمایت‌های مالی دانشگاه پیام‌پردازشی دانشگاه علوم پزشکی شهید بهشتی و انجام‌سازهای سرداشت که با حمایت مالی متوقف دانشگاه تقدیر که سرمایه‌ای آن‌ها

خاتمی ایماکس، تمامی و درجه دو به داده‌ها برخورد

داده‌شناسی از بین این چهار مدل فقط مدل‌های خطا و ایماکس معنا دار شدند. که بزرگ مدل ایماکس بیشترین آماره را داشت، از این مدل برای پراورد کمترین

غلظت مؤثر استفاده کردند.

در مطالعه دیگری که برتر و همکاران انجام دادند (3)، هدف در این مطالعه نیز برآورد دقت‌گرایی غلظت مؤثر بود. در این مطالعه بنچ مدل خطی لغزشی، ایماکس، تمامی و

درجه دو به داده‌ها برخورد داده‌شناسی که تمام مدل‌ها

معنادار شدند؛ در این تحقیق نیز مدل ایماکس

بیشترین آماره را داشت، از این مدل برای پراورد

دقت‌گرایی مؤثر استفاده کردند. آن‌ها در این مطالعه

نام‌دادند که استفاده از روش MCPMod

می‌شود توان مطالعه در تعیین وجود رابطه دوز-پاسخ

افزایش پذیرند. طی نمایی‌های دو مدل ایماکس (7) در مطالعه‌ای

که روی داروی آنتی‌اسپاسمودیک انجام دادند، میانه دوز

مؤثر را با استفاده از مدل لجستیک 110 مدل ایماکس

و 1100 گزارش کردند و در مطالعه حاضر مدل ایماکس نسبت به مدل

لجستیک از دقیق بیشتری برخورد بود.

در مطالعه دیگری که اکبرزاده و همکاران انجام دادند,

میانه دوز موثر 110 مدل که اگرکی براورد

حاصی الکم مدل‌های دوز فاوتی‌دار. در تحقیق مذکور

برای مدل‌های موجود، آموزش نیکویی برخورد انجام‌شده،

در نهایت بیشترین دوز مفنی نگردهد و این میانه دوز

موثر گزارش شده‌بود؛ اثر دیگر در ترکیب مدل‌های نیز

از مدل‌های ایماکس استفاده‌می‌شود؛ اما از مدل‌های

علاوه بر براورد میانه و حداکثر دوز موثر، مدل ایماکس

در مقاله بیشترین مدل انتخاب و همچنین از مدل‌های ایماکس

ترکیب مدل‌های ایماکس شد (7).

با توجه به اینکه این تحقیق روز ترکیب‌های جدید

او-4-دی‌هیدروپپیدینی انجام‌شد، علاوه بر عوارض
منابع

