تأثیر تمرین هوایی بر بیان پروتئین‌های Spred و VEGF و Raf1 بر قلب قلبی صحرایی

نویسنده‌گان: سجاد محمدیاری، سروش جوییه، حسین سووری، عباسعلی گلی‌نژاد، حمذاله هادی

1. گروه فیزیولوژی و روزنه، دانشکده تربیت بدنی و علوم روزنه، دانشگاه تهران، تهران
2. گروه تربیت بدنی دانشگاه علوم انتظامی ایمی

E-mail: choobineh@ut.ac.ir

چکیده

مقدمه و هدف: دیابت یکی از بیماری‌های متابولیکی است که با دیسبالانس و آسیب عروقی همراه است. تمرین ورزشی در بیماران دیابتی باعث بهبود رک زایی و شوک بهبود در دمای این بیماران و VEGF و Raf1 Spred-1 می‌باشد. این مطالعه با روش آزمایش‌های گروهی برای تجزیه و تحلیل اطلاعات، از آزمون تحلیلی واریانس یک‌وسی و آزمون تحلیلی تک‌ویژه یک سطح معنی‌داری p<0.05 و نرمال‌یابی استفاده شد.

مواد و روش‌ها: در این مطالعه، 50 موش صحرایی به صورت رندرامابه دچار کروه و کروه تمرین می‌شود. سلول‌های قلبی ضد و پر عبید رضائی دارای اثرات دیابتی از میزان پروتئین‌های Spred و Raf1 VEGF می‌باشند.

نتایج: نتایج مطالعه نشان داد که بیشترین تغییرات در میزان پروتئین‌های Spred-1 و Raf1 و VEGF و Raf1 Spred-1 در سلول‌های قلبی صحرایی است. بهبود اثرات دیابت بر بیان این پروتئین‌ها در قلب با بهبود می‌خشد.

واژگان کلیدی: تمرین هوایی، عامل رشد، اندوترنتال عروق، Raf1، Spred-1
مقدمه

شروع گسترده بیماری دایبی در سال‌های اخیر، این بیماری را به ایجاد تهیه عضو بدن و تبدیل کردن توریازی بر بیبی پرئی بیبی 1-Spred، Raf1 و VEGF ببفت قلب در هش بی صحرایی دها‌دهی علوي-... دس ؿشایظ دسبیی °C26-20، سعیت

1. Natan
2. Tiago

مطالعات خیلی اندکی تأثیر تمرين هوازی بر اثرات Spred1/Raf1/MAPK در افزایش فلزی و نکایت Spred1 و میکروسنار مارکو و اسلوکالر را نیز در بررسی گردید. به علاوه، دیابت با ناهنجاری‌های توریازی نزی، علائم است، به‌طور کلی است.
وزنی ۵/۸/۱۹۹۵ ۱۹۱/۹ گرم بر اساس وزن بطور تصادفی به جهت گروه کنترل سالم (۱۰۰) تمرینی سالم (۱۵) کنترل دیابتی (۱۰۰) و تمرینی دیابتی همسر دیابت و گروه سالم، خلاصه شمای کلی طرح پژوهش در جدول ۱ گزارش شده است.

جدول ۱. شماره کلی طرح پژوهش

<table>
<thead>
<tr>
<th>مراحل</th>
<th>مرحله تزریق</th>
<th>مرحله مصرف غذای</th>
<th>وزن مطلوب</th>
<th>کنترل سالم</th>
<th>تمرین سالم</th>
<th>کنترل دیابتی</th>
<th>تمرین دیابتی</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>تزریق STZ</td>
<td>انجام تست</td>
<td>برنٍشی و برجِرم 15</td>
<td>۲۸ ساعت بعد از اخیرین جلسه تمرینی</td>
<td>۵ روز ۲۸ ساعت بعد از تزریق STZ</td>
<td>۲ هفته</td>
<td>۱ هفته</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

تجهیز ایجاد دیابت نوع ۱ دیابت در این پژوهش از طریق تزریق مصرف غذای پرچرب و تزریق استریتیزوسیس ایجاد شد (۱۴). غذای مورد استفاده شامل ۵۸ درصد چربی، ۲۵ درصد پروتئین و ۱۷ درصد کربوهیدرات بود. میوه‌های صحرایی گروه دیابتی به مدت دو هفته تحت مصرف غذای پرچرب قرار گرفتند. در حالی که گروه‌های سالم غذای طبیعی مصرف می‌کردند. بعدها انجام تزریق درون صفایی استریتیزوسیس به میزان ۳۵ میلی گرم/کیلوگرم حله در محلول سالیس فیزیولوژیک سرد بعد از ۴ ساعت ناشتا در دو گروه دیابتی انجام گرفت (۱۵). ۴۸ ساعت بعد از تزریق دارو، تومور خونی در چشم حیوان جمع‌آوری و جداسازی سرم انجام و غلظت گل Zu با روش آزمایشی گل Zu اکسیداز با کیت شرکت بارس آزمون سنجیده شد. غلظت گل Zu بالاتر از ۲۰۰ میلی گرم/دسیلیتر بعنوان استاندارد به دیابت تعریف شد (۱۴) و میوه‌های صحرایی و اجد شرایط ۱۲ موسی و صحرایی از گروه کنترل دیابت و ۱۳ موسی و صحرایی از

۱. Pilot study
تأثیر توریی‌زاری بر بیبی پرّتئیّبی ّبی 1-Spred ، Raf1 و VEGF ببفت قلب در هَش ّبی صحرایی

جدول ۲. پروتکل تمرين هوایی با شدت متوسط روي نوار گراندان

<table>
<thead>
<tr>
<th>مدت تمرين (سی)</th>
<th>سپت</th>
<th>هفته اول</th>
<th>هفته دوم</th>
</tr>
</thead>
<tbody>
<tr>
<td>(min 10)</td>
<td>1۰%</td>
<td>(m/min) 1۰</td>
<td>(m/min) 1۰</td>
</tr>
<tr>
<td>(min 1۵)</td>
<td>۱۵%</td>
<td>(m/min) 1۵</td>
<td>(m/min) 1۵</td>
</tr>
<tr>
<td>(min 2۰)</td>
<td>۲۰%</td>
<td>(m/min) ۲۰</td>
<td>(m/min) ۲۰</td>
</tr>
<tr>
<td>(min 2۵)</td>
<td>۲۵%</td>
<td>(m/min) ۲۵</td>
<td>(m/min) ۲۵</td>
</tr>
<tr>
<td>(min ۳۰)</td>
<td>۳۰%</td>
<td>(m/min) ۳۰</td>
<td>(m/min) ۳۰</td>
</tr>
<tr>
<td>(min ۳۵)</td>
<td>۳۵%</td>
<td>(m/min) ۳۵</td>
<td>(m/min) ۳۵</td>
</tr>
<tr>
<td>(min ۴۰)</td>
<td>۴۰%</td>
<td>(m/min) ۴۰</td>
<td>(m/min) ۴۰</td>
</tr>
<tr>
<td>(min ۴۵)</td>
<td>۴۵%</td>
<td>(m/min) ۴۵</td>
<td>(m/min) ۴۵</td>
</tr>
<tr>
<td>(min ۵۰)</td>
<td>۵۰%</td>
<td>(m/min) ۵۰</td>
<td>(m/min) ۵۰</td>
</tr>
<tr>
<td>(min ۵۵)</td>
<td>۵۵%</td>
<td>(m/min) ۵۵</td>
<td>(m/min) ۵۵</td>
</tr>
<tr>
<td>(min ۶۰)</td>
<td>۶۰%</td>
<td>(m/min) ۶۰</td>
<td>(m/min) ۶۰</td>
</tr>
<tr>
<td>(min ۶۵)</td>
<td>۶۵%</td>
<td>(m/min) ۶۵</td>
<td>(m/min) ۶۵</td>
</tr>
<tr>
<td>(min ۷۰)</td>
<td>۷۰%</td>
<td>(m/min) ۷۰</td>
<td>(m/min) ۷۰</td>
</tr>
</tbody>
</table>

سنجش متغیرهای وابسته

پس از ۴۸ ساعت از آخرین جلسه تمرين و پس از ناشتايي شيان نمونه گيري انجام شد. موسياى صحرایی با تزيين درون صفلي تركيبی از کامين (۵۰ ميليگرم/کيلوگرم) و زابلازن (۱۰۰ ميليگرم/کيلوگرم) بهبود شدند. سپس فسيه حيونات شکافته و عضله قلبی موش های صحرایی تحت شرایط استریل جدا شد. پنچ قلب بلانفته در نتیجه نتایج منتجد. ابتدا نمونه به بعد تحت تراکم خارج شدن و مدتی در دماي اتاق قرار گرفتند. سپس نمونه وزن شدند و مقدار ۱۰۰ ميليگرم از هر نمونه در ميكروتوب ۲/۵ کدکاری شده قرار داده شدند. نمونه‌ها روی خز گذاشته شدند تا دیگر مراحل كار انجام گیرد.

نتیجه‌ی امکن برای سنجش ميزان پروتين های با استفاده از كيت تجاری اختصاصي Raf1 Spred-1 Catalog no: SPRED1 ELISA Kit اندازه گيري (Raf1 ELISA Kit antibodies شرکت ABIN123768).
یافته‌ها

تغییرات وزن موش‌های صحراپی

همان‌گونه که در شکل ۱ ملاحظه می‌شود، کاهش سیستم‌های تنفسی، مصرف غذا و وزن بدن در انتهای داعی می‌شود. آینه گروه‌های داده شده و پس از آن به‌طور کلی در تمامی گروه‌ها به صورت طبیعی ادامه پیدا کرد. بعد از گذشت چهار ماه از زمان شروع مصرف غذا یک پرچم توسط گروه‌های داده، اختلاف وزن بین گروه کنترل، دایپتی و تمرین دایپتی با سابر گروه‌ها معنی‌دار شد و این اخلاق با پایان تحقیق برای گروه کنترل و دو فاصله کمتر از اتمام تمرین برای گروه تمرین دایپتی ادامه داشت.

تغییرات وزن بدن در گروه‌های مختلف

![شکل ۱. تغییرات وزن بدن در گروه‌های مختلف](https://example.com/image1)

در جهار گروه کنترل، کنترل تمرین، دایپتی و دایپتی تمرین را نشان می‌دهد. تجربه مربوط به آزمون آنالیز واریانس یک‌وسیه، برای مقادیر پروتن ۱ مشابه نشان داد تفاوت معنی‌داری بین چهار گروه مورد مطالعه وجود دارد (P<0.0005). تایپ آزمون تحلیلی توکسی نشان داد مقدار پایین آینه پروتئین در گروه کنترل به‌صورت معنی‌داری بیشتر از گروه کنترل تمرین (P<0.0005) و گروه دایپتی (P<0.0005). همچنین در گروه دایپتی به‌صورت معنی‌داری بیشتر از گروه کنترل تمرین (P<0.0005) و دایپتی تمرین (P<0.0005) بود.

![شکل ۲. تغییرات پروتئین](https://example.com/image2)

تغییرات گلوكز سرمی موش‌های صحراپی

مقادیر گلوكز سرمی موش‌های صحراپی پس از انتقال دایپتی و پس از ۸ هفته تمرین استاتمات در شکل ۲ ارائه شده است. انتقال دایپتی موجب افزایش معنی‌دار گلوكز سرمی در گروه‌های دایپتی و تمرین دایپتی گردید. همچنین ۸ هفته تمرین استاتمات موجب کاهش معنی‌دار گلوكز سرمی در گروه تمرین دایپتی گردید.
تأثیر تمرین مویازی بر بیان پروتئین‌های VEGF و Raf1. Spred-1

شکل 2. میانگین مقادیر بیان پروتئین 1-Spred بافت قلب در بار دریافت Spred-1 در گروه دیابت از گروه کنترل (P<0.0005).

شکل 3. میانگین مقادیر بیان پروتئین Raf1 بافت قلب در بار دریافت Raf1 در گروه دیابت از گروه کنترل (P<0.0005).

شاخص‌های مورد مطالعه پس از دوره تمرینی
- نشان دهنده تفاوت معنی‌دار بین گروه کنترل سالم و تمرین سالم
- نشان دهنده تفاوت معنی‌دار بین گروه کنترل سالم و تمرین دیابتی
- نشان دهنده تفاوت معنی‌دار بین گروه کنترل دیابتی و تمرین دیابتی
- نشان دهنده تفاوت معنی‌دار بین گروه کنترل سالم و دیابتی

شکل 4. میانگین مقادیر پروتئین VEGF بافت قلب در بار دریافت VEGF در گروه دیابت از گروه کنترل (P=0.002).

شکل 5. میانگین مقادیر پروتئین Raf1 بافت قلب در بار دریافت Raf1 در گروه دیابت از گروه کنترل (P<0.0005).

توکی نشان داد مقدار بیان این پروتئین در گروه کنترل تمرین، به صورت معنی‌داری بیشتر از گروه کنترل تمرين، به صورت معنی‌داری بیشتر از گروه کنترل (P<0.0005) و گروه دیابت (P<0.0005) بود. همچنین در گروه کنترل به صورت معنی‌داری بیشتر از گروه دیابت (P<0.0005) و در گروه دیابت تمرين بیشتر از گروه دیابت (P<0.0005) بود.
دبایت طبیعی است. اما فعالسازی ۱ Flik-۱ طبیعی نیست (۲۰). بنابراین، احتمالاً ۱ Flik-۱ گیرنده اصلی در گیرنده ERK1/2 و مولکول سلولی را تغییر می‌دهد. NO cNOS و تولید

که برای تاثیر سلول‌های اندرتال و مهار آپوتزی لازم است (۲۱). مطالعه حاضر نشان داد میزان پروتئین VEGFR2 به موجب میزان دیابتی افزایش و میزان SPRED1 کاهش می‌یابد. چنگلی و همکاران (۲۰۱۴) نشان دادند که افزایش میزان VEGFR2 در سرطان سلولی کبد در محققان می‌تواند منتج‌‌یابی‌‌ی درمان کاهش حیاتی در فرآیند آنتی‌میتاسور مانند ERK1/2 در شرایط آزمایش‌گاهی بازی می‌کند. این محققان در تحقیق خود exclus کردند مانند تفاوت میزان متاتاست و افزایشنار در ترکیب با هدف قرار دادن و mir126-3p مهار می‌کند. این نشان دادند مقدار SPRED1 همبستگی معمول با VEGFR2 و SPRED1PI3KR2 در مطالعه نشان دادند که در موارد دیابتی، میزان پروتئین VEGFR2 و SPRED1 کاهش می‌یابد. دیابتی بود.

در مطالعه حاضر مشخص شد دبایت باعث کاهش معنی‌دار میزان پروتئین VEGFR2 بافت قلبی می‌شود. دبایت، رگ زایی و تغییر اعماق بین قلب و عضلات اسکلتی در انسان و مدل‌های حیوانی را کاهش می‌دهد (۱۸-۲۰). هنگامی که دیابت در پایین‌دست سلول‌های اندرتالی می‌شود، فعالسازی VEGFR1 در مونوسیت‌های افراد دیابتی طبیعی است (۱۹). فعالسازی VEGFR1 در بیماران پس از عمل جراحی با پیشوندی شرایان کروتی افزایش می‌یابد. در حالی که میزان ۱ Flik-۱ در آنها کاهش یافته است. میزان سفارناکلی تورمین ۱ Flik-۱ ناشی از VEGFR1 که میزان SPRED1 در ناحیه Akt ناک از سلول‌های حیاتی تولید می‌شود (۲۲). در راستای تجاویل پژوهش حاضر، مطالعه ایمپیتو و همکاران نشان دادند تاثیر دبایت دیابتی به کاهش فعالیت 활 cNOS و ترتوانیک کبایز می‌شود. عملکرد ۱ Flik-۱ در شرایط VEGFR1 بافت.
تأثیر تمرین موئی بر بیان پروتئینهای VEGF و Raf1. Spred-1 بافت قلب در موشهای صحرایی

(2006)، نشان داد که فراوانی آنزیم آنزیم‌گذاری VEGF (eNOS) و نمره‌ای اککسید ستنز اندوکلیسی (AKT) مسئول گردیدن VEGF باید در کمک به کاهش عضله قلبی و کاهش تحرکی و تیمرین نشان داد در چنین ظرفیتی که انتهای انتهایی بوده است. تحقیق مطالعه این موضوع نشان داد که انرژی انتهایی سطح سیستمیک در موشهای صحرایی در این موقعیت انجام می‌دهد. بنابراین، فراوانی آنزیم را در کمک به کاهش عضله قلبی و کاهش تحرکی و تیمرین نشان داد. تحقیق مطالعه این موضوع نشان داد که انرژی انتهایی سطح سیستمیک در موشهای صحرایی در این موقعیت انجام می‌دهد. بنابراین، فراوانی آنزیم را در کمک به کاهش عضله قلبی و کاهش تحرکی و تیمرین نشان داد.
نتیجه‌گیری کلی

بطریکی نتایج پژوهش حاضر نشان داد که در این مقاله می‌تواند موجب افزایش معنی‌دار VEGF و Spred-1 باشد. این پوشش در افراد تحت جراحی دیابت مبتلا به افزایش دیابت و افزایش هدف درمانی احتمالات یافتن رابطه پاتولوژیک در گروه VEGF است.

منابع

1. Krous
تأثیر توریئی پیشین بر بیبی پرٍتئیي ّبی 1-Spred ،Raf1 ٍ VEGF ببفت قلب در هَش ّبی صحرایی

The effect of aerobic exercise on protein expression of VEGF, Spred 1, and Raf1 in cardiac tissue of rats

Sajjad Mohammadyari¹, Siroos Choobineh¹*, Rahman Soori¹, Abbasali Gaeini¹, Hamdolah Hadi²

¹. Department of Exercise Physiology, Faculty of Physical Education and Sports Science, University of Tehran, Tehran, Iran.
². Faculty of Physical Education and Sports Science, Police University, Tehran, Iran.

* Corresponding author e-mail: choobineh@ut.ac.ir

Abstract

Background and Objective: Diabetes is a metabolic disorder that is associated with dysfunction and impairment of vascular system. Exercise training in diabetic patients improves angiogenesis, which helps treatment of diabetes. The purpose of this study was investigation of aerobic exercise effect on cardiac expression of the proteins Spred-1, Raf1, and VEGF in diabetic rats.

Materials and Methods: In this study, 50 rats were randomly divided into 4 groups of diabetic, intact aerobic exercise (8 weeks for 6 sessions per week), diabetic, and intact control. Cardiac muscle was removed and placed immediately in liquid nitrogen. Protein expression of VEGF, Raf-1 and Spred-1 was investigated by ELISA method. Data were analysed using SPSS (version 16.0) at a significance level of p < 0.05. One way ANOVA was used for data analysis with Tukey’s test to find differences between groups.

Result: Results showed that diabetes leads to decreased cardiac expression of Raf-1 (p<0.05) and VEGF (p<0.05) proteins and increased cardiac expression of Spred-1 protein (p<0.05). As well, eight weeks of aerobic training led to increase of cardiac expression of Raf-1 (p<0.05) and VEGF (p<0.05) protein and decreased cardiac expression of Spred-1(p<0.05) protein in diabetic rats.

Conclusion: Aerobic exercise training increases expression of VEGF and Raf1 protein and decreases expression of Spred-1 in cardiomyocytes, therefore, the effect of diabetes on these proteins in the presence of aerobic exercise is attenuated.

Keywords: Aerobic training, Vascular endothelial growth factor, Diabetes, Spred-1, Raf1