اثر سیلی ماریان بر اختلالات حافظه و یادگیری الگا شده با نانو ذرات دی اکسید تیتانیوم

نویسندگان: پرستو بهرام کلهری، اکبر حاجی‌زاده مقدم، محبوبه زارع، رضا صیرفی

چکیده

هدف: نانو ذرات دی اکسید تیتانیوم یکی از پره‌رفت‌ترین نانو ذرات است که در زیست پزشکی لوازم‌آرایشی و صنعت استفاده می‌شود. این فرمول دارای میکرو‌بازسیتی و اکسیژن سیلیکات است که در ناحیه کیاه خارمزمی به دست می‌آید و به خاطر دارا بودن خاصیت مهار رادیکال‌های آزاد، به عنوان آنتی‌اکسیدان عمل می‌کند. هدف از این مطالعه بررسی اثر نانو ذرات دی اکسید بی‌هوبو اکسید تیتانیوم (TiO2) بر حافظه الگا و یادگیری الگا (Silybum marianum) است.

مواد و روش‌ها: در این پژوهش موسه‌های صحرايی مورد به جهت گروه کنترل، سم مسوم شده‌ها نانو ذرات TiO2 (اقتصاد خوراکی نانو 150 میلی‌کرم با فلت 15 میلی‌کرم و کروم مسوم شده‌ها) به صورت اتفاقی به اختلاف‌های تیبوی (Silybum marianum) می‌باشد. نانو ذرات دی اکسید تیتانیوم (TiO2) بر حافظه الگا و یادگیری الگا (Silybum marianum) به صورت دستگاه خاکی (Shuttle box) توضیح داده شد.

نتایج: نانو ذرات دی اکسید تیتانیوم موجب کاهش معنی‌دار تأخیر در زمان اوتود با آتفاک‌سازی و افتزایش ماندن در این آفات تدریجی بود که به کروم کنترل می‌رسید (P<0.0001) و تیبوی با سیلیکون بررسی داده‌بود. نتایج کنترل بالاتر به نانو ذرات دی اکسید تیتانیوم می‌رسید.

واژگان کلیدی: نانو ذرات TiO2، همبسیزیمو، بی‌هوبو، اکسید تیتانیوم
اثر سیلیهاری بر اختلالات حافظه و یادگیری القا ضذُ باًاًَ ررات دی اکسیذ تیتاًیَم

دوماهنامه علمی- پژوهشی دانشور... آة ٚ غزای وبفی دػششػی
داؿشٙذ. آصٔب یؾ ٞب یه ٞفشٝ ثؼذ اص ا٘شمبَ ٔٛؽ ٞب ثٝ
ٔٙظٛس ػبصٌبسی ثب ٔحیظ ا٘دبْ ٌش فز. ٔٛؽ ٞبی

ناتونکتونلوژی توانایی دست-کاری مواد در سطح نک اتم و گروه‌های کوچک اتم، بنظر تولید ساختارها،
مواد و اجزای به‌دست‌آمده با خصوصی بی‌هم‌بستگی و
شیمیاًی است (1). پیشرفت‌های اخیر در ناتونکتونلوژی
منجر به تولید مواد جدید و گوناگونی شده است.

ناتون مواد سطح پرگری نسبت به واحد حجم، فعالیت
شیمیاًی زیاد و نفوذپذیری بیشتری به درون سول
دارند. به دلیل این ویژگی‌ها، ناتون مواد می‌توانند اثرات
پیش‌نهاده‌ای بر بسیار انسان بگذارند (2). ناتون
ذرات آزمایشگاهی ناتون مواد مورد استفاده‌ی در
مواد آراپاتی، داروها، مواد انژنی گذار و رنگ‌ها
می‌باشند. ناتون ذرات TiO2 می‌توانند در کیسه، کلیه
اطالش، شلب و مغز حیوانات که در معرض این
ذرات قرارگرفتن، نعمت‌برای و باعث افزایش
اسکیداًی و تهاب در آنها آسیب‌پذیری دستگاه‌ها و
طلس و بسیاری از بیماری‌ها می‌شود. مطالعات
انجام شده‌ای نشان می‌دهد که این ناتون ذرات
می‌توانند در تغییر مختلفی بسیاری از
جمله‌هایی که تجربی مشاهده شده‌اند و نیز
آب‌دانشی در موجوده‌های هیپکامپ را اقای کند.

بطوریکه قرار گرفتن در معرض ناتون ذرات TiO2
به‌صورت استثنایی موجب تغییر این ناتون‌ها در
نحوه‌هایی که این ذرات نشان داده‌اند و نیز
در نظام حیاتی آنها که شامل هیپکامپ و لاکچر
گردیده (2-1).

فلورونده‌ها به عنوان گروهی از ترکیبات پلی تنولی
به مقدار قرار آوادن در بی‌خانش متفاوت گیاهان به‌ای
شنود و به دلیل این نیاز و محدودیت متنوعی که در
آنتی‌اکسیدانی، ضد‌بی‌ماری، ضد‌تهابی و مورد نظر
پژوهش‌گران قرار گرفته‌اند (3). گاهی در نمایش
گرا شی‌کردن از انواعی است. سیلی‌مابر، ماه
دفع این گیاه عصاره‌ای استاندارد داده متشکل از ترکیبی
80-70 درصد فلاونولگن‌های سیلی‌مارین (سیلی‌بی‌ا و
B و ازوسلنین‌های A و B و سیلی‌بی‌ا و
سیلی‌کرسنین‌های (ناکسیفول و
کونوسین‌های 20-30 درصد به‌ایمانده آن شامل

مقدمه

بی‌خانشی تشکیل‌شده از ترکیبات پلی‌مرک و پلی
فولیک اکسید است. سیلی‌مارین، محدودیتی
گسترده‌ای از اثرات زیستی و دارویی شامل فعالیت
آنتی‌اکسیدانی، تحقیق‌های پرفروش و بزاسازی
سول و اثرات قابل توجه در سطوح چند
به علاوه تئوری‌های دیگری، ملاحظات قلب، ضد‌الحالی،
کاهدی، نوروتروفیک، حفاظت عصبی و تبادل
ایمنی نزدیک گزارش شده است (9). هدف از انجام ان
پژوهش پرسی اثر مصرف خوراکی سیلی‌مارین
در اختلالات حافظه و یادگیری ناشی از ناتون ذرات TiO2
موش‌صلاحیتی نیز وزاد ویستار است.

مواد و روش‌ها

آزمایشگاهی ناتون ذرات TiO2
در این پژوهش ناتون ذرات TiO2 به روش سل - دل
ساخته شده است. 5 میلی‌لیتر محلول در تماس
بی‌خانشی و در دمای 37 درجه سانتی‌گراد
اضافه شد. سپس برای گیرنده آبکاک محلول در
مدت 2 ساعت در دمای میکرو یا گاز کربناته
قرار داده شد که محلول زلاته‌پذیر برای پوشش
صد. پس از انبار زمان زلاته‌پذیری، محلول زلاته‌پذیری به
مدت 3 روز در دمای 37 درجه سانتی‌گراد گرفت.
پس از فیلتر ندهای دست‌آمده برای گرفتن کلینیکی در
مدت ۶۰ دقیقه سانتی‌گراد در کوره الکترینی، به
مدت 2 ساعت قرار گرفت (10).

خیال‌ها و گروه‌های آزمایشی
در این پژوهش 48 سر موش صحرایی نزی وزاد ویستار
با وزن 200-250 گرم از پژوهشگاه انتقال پاهوی‌پرداز
خوداری و به اثاث حیوانات گروه زیست‌سازی
دانشگاه مازندران انتقال داده شدند. حیوانات پس از
انتقال به آزمایشگاه به دوری روشن‌تر و نوری
ساعت و دما 24 درجه سانتی‌گراد تغییر فنی
در طول دوری آزمایش به آب و غذای کافی دسترسی
داده شدند. آزمایش‌ها یک هفته بعد از انتقال موش‌ها به
منشور سازگاری با محیط احتمال گرفت. موش‌های

Downloaded from daneshvarmed.shahed.ac.ir at 20:26 IRDT on Thursday August 1st 2019
پرستَبْرام کلْری ٍ ّوکاراى

دوماهنامه علمي- پژوهشي دانشور پزشكي/ دانشگاه شاهد/ دی 6931/ سالبیست وپنجم/ ...

ثب سٛخٝ ثٝ ؿىُ 1 ٔیبٍ٘یٗ ا٘ذاصٜ ٘ب٘ٛ رسارTiO2

سُخٝ ؿذٜ ثٝ ٚػیّی ٔیىشٚػىٛح سٚثـی دس ٔحذٚدٜ

30 ٘ب٘ٛٔششاػز (ؿىُ1.)

پرستَبْرام کلْری ٍ ّوکاراى

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ی ثیٗ دٚ اسبق ثبص

ػبػز ثؼذ اص دسیچٝ ؿذ. حیٛاٖ دس ثخؾ

ثب٘یٝ ثٛد ٚ سأخیش صٔب٘ی ثشای اِٚیٗ ٚسٚد ثٝ

ثب٘یٝ ثٛد ٚ سأخیش صٔب٘ی ثشای اِٚیٗ ٚسٚد ثٝ اسبق سبسیه ٚ

ثؼشٝ ٚ ؿٛن ثٝ كٛسر لجُ ٚاسد ٌشدیذ ٚ ایٗ وبس

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبص

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ

ثب٘یٝ ثٝ دبی حیٛاٖ

ی ثیٗ دٚ اسبق ثبچ

آص ثخؾ سبسیه خبسج ٚ ثٝ
اثر سیلی مارین بر اختلالات حافظه و یادگیری افکت شده با تناو دو راز و دیاکسید تیتانیوم

نمودار ۱. بررسی اثر نانو TiO۲ بر اختلالات پادگیری

(Mean±SD و n=۷) برحسب تأخیر ورود به تاریک (p<۰/۰۵) و افزایش ماندن در تاریک تاریک نسبت به گروه کنترل می‌شود (p<۰/۰۵).

نمودار ۲. بررسی اثر سیلی مارین بر اختلالات پادگیری

(Mean±SD و n=۷) برحسب تأخیر ورود به تاریک (p<۰/۰۵) و افزایش ماندن در تاریک تاریک نسبت به گروه پیمانهای می‌شود (p<۰/۰۵).

نمودار ۳. بررسی اثر سیلی مارین بر اختلالات پادگیری

(Mean±SD و n=۷) برحسب تأخیر ورود به تاریک (p<۰/۰۵) و افزایش ماندن در تاریک تاریک نسبت به گروه پیمانهای می‌شود (p<۰/۰۵).

نمودار ۴. بررسی اثر سیلی مارین بر اختلالات پادگیری

(Mean±SD و n=۷) برحسب تأخیر ورود به تاریک (p<۰/۰۵) و افزایش ماندن در تاریک تاریک نسبت به گروه پیمانهای می‌شود (p<۰/۰۵).

نتایج

نتایج این مطالعه نشان داد که مرگ و میر کاهش معنی‌دار در مقایسه با گروه کنترل می‌شود.

(۰/۰۵) و افزایش ماندن در اثاث تاریک نسبت به گروه کنترل می‌شود (p<۰/۰۵).

شکل ۱. تصویر نمونه‌برداری SEM TiO۲

امور روابط نانو TiO۲

در مدت زمان توقف در اتاق تاریک نسبت به گروه پیمانهای می‌شود (p<۰/۰۵).

شکل ۲. تصویر نمونه‌برداری SEM TiO۲

امور روابط نانو TiO۲

در مدت زمان توقف در اتاق تاریک نسبت به گروه پیمانهای می‌شود (p<۰/۰۵).

شکل ۳. تصویر نمونه‌برداری SEM TiO۲

امور روابط نانو TiO۲

در مدت زمان توقف در اتاق تاریک نسبت به گروه پیمانهای می‌شود (p<۰/۰۵).
بحث

بنا بر مطالعه حاضر به بررسی اثر سیلیمیارین بر Tio2 در ازلالات حافظه و یادگیری اشاره داشته و نتایج ذرات پرداخته شده است. نتایج نشان داد که صرف تاون ذرات در می‌یابد که نگاه مدت زمان و رود به اشکال تازه و

Tio2 افزایش مانند در اتاق تازه که نشان دهند از چرخه تازه، که در نتایج ذرات تاون داشته است. همچنین مشاهده گردید که مصرف سیلیمیارین موجب افزایش معما دارد در مدت زمان تأخیر و رود به اشکال

تازه و کاهش در مدت زمان تأثیر زیادی به بهبود یادگیری و حفظ احترای غیرفعال می باشد. مطالعات پیشین حاکی از آن است که ناز ذرات تاون داشته است.

Tio2 روش‌های مختلف استثنایاً، گزارش، پوس، و نزدیک وارد بدین انسان می‌گردد (15) و همچنین می‌تواند از سد تغییر خوزه عبور کرده وارد سیستم عصبی مرکزی شوند. ناز ذرات تاون تولید

Tio2 گونه‌های غفل اکسیژن در مغنی تحرکی و باعث آسیب عصبی شوند (19). گزارش شده است که استرس اکسیدانی و آسب ناشی از نافذ ذرات در می‌یابد Tio2 سیلیمیارین به دلیل شیب ماژورا با هیپوفکی‌ها استندی این تاون وارد هستن دول شود و با اثر اثر انزیمی رهروپسی، عمل برونتی‌سازی را برای خود خود، همچنین استندی و سیلیمیار

Tio2 مرگ ناشی در پادگن‌های شوند (22). یگمالی و همکاران نشان دادند که میانگین تعداد سولولا تا ناحیههای HBF و سلولهای گرانولار در ناحیه CAI شکنج ذهنی در تیمار با سیلیمیار، ماه مؤثر سیلیمیارین در مقایسه با گروه کنترل به طور کلی تولید افزایش یافته است (23). هریاباما و همکاران اثر سیلیمیارین را بر ایکسمک بررسی کرده و نتیجه گرفته که سیلیمیارین اثر حفاظتی بر ناهید در

مرگ سلولهای عصبی در هیپوکامپ موش صحرای نار در (24). با توجه به مطالعات پیشین احتمالاً مصرف
Siemen Maminan Moghabehofood Hafazze, Vaadegari, and Jirjan

Effects of Nanoparticulate TiO2 delivered to the molecular nose in rats: A behavioral

Sasagaziary

Annex:

The effect of silymarin on memory and learning disorders induced by TiO2 nanoparticles

Parastu Bahram Kalhori¹, Akbar Hajizade Moghaddam¹*, Mahbobe Zare², Reza Sayrafi³

1. Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
2. Faculty of Herbal Medicine, Amol University of Special Modern Technologies, Amol, Iran.
3. Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.

* Corresponding author e-mail: a.hajizadeh@umz.ac.ir

Abstract

Background and Objective: Titanium dioxide nanoparticles (NP TiO2) are one of the most highly used particles in the world. They are used for biomedical and cosmetic goals. Several studies have shown that NP TiO2 induce oxidative stress in the hippocampus. Silymarin is a flavonolignan that is gained from seed of milk thistle (Silybum marianum) and due to its inhibition of free radicals, acts as an antioxidant in central nerves system. Aim of this research was to study the effect of silymarin on memory and learning disorders induced by TiO2 nanoparticles.

Materials and Methods: In this experimental study, rats were divided into four groups: control, vehicle, toxic group (150 mg/kg of TiO2 NPs for three weeks orally) as well as silymarin (100 mg/kg for three weeks orally after TiO2 NPs administration). The destructive effect of Nano TiO2 and treatment with silymarin were measured by passive avoidance test using shuttle box.

Results: Oral administration of TiO2 NPs resulted in a significant increase of time of spending in dark box and reduction of time to enter the dark box and silymarin significantly decreased time of spending in dark box (P > 0.001) and treatment with silymarin returned the index to the level of control (P > 0.001).

Conclusion: The results from the present study indicated that silymarin probably due to its antioxidant effects causes improvement of memory and learning disorders induced by TiO2 nanoparticles.

Keywords: TiO2 nanoparticles, Hippocampus, Passive avoidance learning, Silymarin