تغییرات بیان زن فاکتور رشد شب‌های انسولینی (IGF-I) در عضله دوقلوی موش‌های نر صحراپی نزد ویستار پس از یک دوره تمرین تناوبی خیلی شدید

نویسنده‌گان: هانیه نصرالهی، عباسعلی گائینی، سهیل بیگلری*، علیرضا قارداشی افوسی
گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تهران، تهران، ایران

E-mail: s.biglari.physiology@gmail.com

چکیده
مقدمه و هدف: پژوهش‌ها تاکنون می‌آموزند فاکتور رشد شب‌های انسولینی 1 (IGF-I) عامل اصلی رشد و همبستگی تاره‌های عضلانی است. با وجود این، تأثیر تمرین‌های تناوبی خیلی شدید (سر-بب) در عضله دوقلوی موسه‌های نر صحراپی نزد ویستار پس از یک دوره تمرین تناوبی خیلی شدید بود.

مواد و روش‌ها: در این مطالعه 16 سر موش صحراپی نزد ویستار با محدوده وزنی 25 ± 5 کگرم به دو گروه کنترل (8=8) و تمرین (8=8) تقسیم شدند. پس از یک ماه تمرین، پس از یک ماه تمرین، برآمته تمرین به مدت 20 دقیقه، به مدت هفته و به مدت هفته هماجرا شد. در سنجش Real time-PCR، عضله دوقلوی استخراج و میزان میزان IGF-I در بین بیان شن (ین عضله) و بیان شن (یک دیگر) محاسبه شد. برای تجزیه و حل داده‌های آماری از آزمون t مستقل استفاده شد.

نتایج: تحلیل آماری نشان داد یک بیان IGF-I غلبه دوقلو در گروه تمرینی مقایسه با گروه کنترل بیش از برابر (z=38.3) درصد افزایش داشت (P=0.016) و وزن عضله دوقلو در گروه تمرینی مقایسه با گروه کنترل افزایش معنی‌داری داشت (P=0.002).

نتیجه‌گیری: تمرین ورزشی به فاکتور افزایش زن عضله دوقلوی موش‌های IGF-I و وزن عضله دوقلوی میزان فاکتور رشد شب‌های انسولینی (IGF-I). Real time-PCR، عضله دوقلوی بیان زن و ورزشی، و یک دیگر میزان

واژگان کلیدی: همبستگی Tاره‌های عضلانی، IGF-I، Real time-PCR
تغییرات بیان شن فاکتور رضذ ضبٍ اوسًلیى‌ی (IGF-I) در عض ٍ ديق ًی مًشَای ور...

مقدمه

اتوان تمرين‌های ورژیك باعث برود سازگاری‌های
فیژیولوژیکی و بیوشیمی‌ی غوناگونی در عضله اسکلتی
می‌شود. یکی از این سازگاری‌های مهم فیژیولوژیکی،
رشد و هیپرتو فعالیت عضلات اسکلتی است (1, 2). رشد
عضله اسکلتی، یکی از قطعی ترین فعالیت‌های محور
هورمون رشد فاکتور رشد شبه انسولینی ۱ (GH/IGF-I)
است (3). مطالعات نشان می‌دهند برخی آثار اصلی
با ارتباط دارد، ولی به نظر می‌رسد GH
اصلی رشد و تکامل سلول عضلانی است که با قرار
گرفتن در معرض دوئونی و برونزا آن
اًطبیعتی‌تری اتفاق می‌افتد.

2. High-intensity interval training
دوره تمرین توانایی خیلی شدید بود.

مواد و روش‌ها

نوع پژوهش توصیه‌ای و روش آن تجربی بود. به همین منظور، 12 سر موش صحرایی نر زاد و ویستار با میانگین وزنی 250-270 گرم و سن 10 هفته از دانشگاه علوم پزشکی ایران خریداری شد. حیوانات در آزمایشگاه استاندارد چونگلان (جرخه 12 ساعت روشنایی- نارنجی و میانگین درجه حرارت 24 ± درجه سیلسیوس) با دسترسی آزادانه به آب و غذا در مرکز تحقیقات بیمارستان قلب و عروق شهید رجایی نگهداری شدند. موش‌های صحرایی پس از انتقال به آزمایشگاه، صادقی به دو گروه HIT (n=8) و کنترل (n=8) تقسیم شدند.

تمرین ورزشی و آزمون ورزشی

موش‌های صحرایی پس از آشنایی با تمرین، آزمون تمرین ورزشی در آنها در روز قبل از شروع برنامه تمرین و دو روز بعد از انجام برگزاری تمرین در پایان هفته هشتم تمرین انجام گیرد. بر اساس مطالعه هموئال و همکارانی، هر موش صحرایی

جدول 1. پروتکل تمرین توانایی خیلی شدید

<table>
<thead>
<tr>
<th>عدد تمرین (دیگ)</th>
<th>توانایی (کم توان)</th>
<th>توانایی (متوسط توان)</th>
<th>توانایی (خیلی شدید)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 1/05 درصد</td>
<td>30 1/05 درصد</td>
<td>40 1/05 درصد</td>
<td>10 0 درصد</td>
</tr>
<tr>
<td>30 1/05 درصد</td>
<td>50 1/05 درصد</td>
<td>40 1/05 درصد</td>
<td>10 0 درصد</td>
</tr>
<tr>
<td>30 1/05 درصد</td>
<td>50 1/05 درصد</td>
<td>50 1/05 درصد</td>
<td>10 0 درصد</td>
</tr>
<tr>
<td>30 1/05 درصد</td>
<td>70 1/05 درصد</td>
<td>50 1/05 درصد</td>
<td>10 0 درصد</td>
</tr>
<tr>
<td>30 1/05 درصد</td>
<td>70 1/05 درصد</td>
<td>70 1/05 درصد</td>
<td>10 0 درصد</td>
</tr>
<tr>
<td>30 1/05 درصد</td>
<td>90 1/05 درصد</td>
<td>70 1/05 درصد</td>
<td>10 0 درصد</td>
</tr>
</tbody>
</table>

گروها کنترل

شیرات ریزی جویان در گروه کنترل به چند انجام تمرین‌های روزانه در سایر اوقات مثل گروه تمرین بود و حتی برای شیب‌سازی بستر گروه کنترل در دوره زمانی تمرین سه جلسه در هفته و چهار جلسه به صدت 15 دقیقه، روی دستگاه نوار گران با سرعت 10 متر در دقیقه قرار می‌گرفتند (9).

استخراج RNA

84 ساعت پس از آخرین جلسه تمرین، موش‌های صحرایی توزیع در دو گروه کم و بالا (9.0 mg/kg و زاییرالین (10 mg/kg) به هوا و عضله دوفلو سمت
تغییرات بیان زن فاکتور رضذ ضبٍ اوسًلیىی (IGF-I) در عض و دیقًی مًشَای ور ...

دٍهاٌّاهِ علوي- پژٍّشي داًشَر ... هؼتمل ثشإ همبٗؼ ِ
دادُّبٕ ث٘ي گشٍّٖ پظٍّؾ انتقال داده شد.
سپس ماء رويبي به ميكروتوب انتقال داده شد.

سپس ۵ ميلي‌مانه‌بر روي ۱۸ ور ۵/۰α≤ دس ًظش
گشفتِ ؿذ.

(appendendum) ارزيابي شد که
نнт جبگي ۲۷/۳۰۰۰ نانومتر بر نما نمونه‌ها بی
ت ۱/۸ بود. نمونه‌ها در مداي نمی ۸۰ درجه
سانتي گراد برای آزمایش‌های بعدی نگهداری شدند.

جدول ۲. نوی برای‌هم‌ها (Zn²⁺-IGF-I)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Host</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF-1</td>
<td>Rat</td>
<td>CTCTAAACATCTCCCATCTC</td>
<td>TTCAAGAAGTCACATAGCG</td>
</tr>
</tbody>
</table>

cDNA ساخت

پس از استخراج RNA با خلود و غلظت بالا از تمامی نمونه‌ها مورد مطالعه مراحل سنتز طبق
cDNA پرپتکل شمار سانتی‌ساس (Fermentas, USA) بدنی‌منشور ابدا RNA، پرپام و آببا هم‌ترک شدند
و محلول به مدت ۵ دقيقه در مداي ۶۰ درجه سانتي‌گراد اکوبه شد. مسپ محلول به مدت ۲ دقيقه روی پج قرار
گرفت. پس از آن، RNA پرپام به محلول اضافه شدند. محلول در ۳ مرحلي بیشتر سر‌هم‌انکوبه
گردید: مرحلي اول: انکوبه به مدت ۱۰ دقیقه در مداي ۳۰ درجه سانتي‌گراد: مرحلي دوم: انکوبه به مدت ۲۰ دقیقه در دما ۴۲ درجه سانتي‌گراد: مرحلي سوم: انکوبه به مدت ۵ دماه در مداي ۶۵ درجه سانتي‌گراد انتخاب گردید و در نهایت، سنتز شده در مداي ۶۵-
۵۰ درجه سانتي‌گراد ذخيره شد.

Real time – PCR

جهت اندازه‌گيري سطح پيان IGF-I mRNA از RNA IGF-I mRNA استفاده شد. هر وکشا با Real time-PCR
کمي درآمده precrafted mix اختصاصي
پا و سپس در دستگاه SYBER Green PCR master mix

طق پرپتکل Real time-PCR (Applied Biosystems, USA)

شرکت سانتی‌ساس انجام گرفت. ۴۰ سیکل برای هر

عشرت با نرم‌افزار ۱۹ مورد آنالیز
SPSS آماری قرار گرفت. از آزمون شاپور وبلک برای پرسی
اطلاعات حاصل با نرم‌افزار ۱۹ مورد آنالیز
اماری قرار گرفت. از آزمون شاپور وبلک برای پرسی
طبیعی روده داده‌ها از آزمون ۱ سکت قرار مقایسه
داده‌ها بین گروه‌پزشک استفاده شد. سطح
مباحث برای هر آزمون‌های آماری ۰/۰۵ در نظر
گرفته شد.
نتایج تغییرات وزن موش‌های صحرایی در جدول ۳ گزارش شده است. وزن موش‌های صحرایی در انتهای مطالعه در مقایسه با هوی ۶۸۳ در ابتدای مطالعه افزایش داشت. در حالی که بین گروه‌های تغییری مشاهده نشد. نتایج نشان می‌دهد تمرین HIIT به افزایش معادار وزن عضله دوقلو در گروه تمرین منجر شده است (p=0.012) (جدول ۴).

جدول ۳ میانگین و انحراف استاندارد وزن گروه‌ها

<table>
<thead>
<tr>
<th>گروه</th>
<th>وزن نهایی (کرم)</th>
<th>وزن اولیه (کرم)</th>
<th>گرایش</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.26%</td>
<td>228.6 ± 7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25.55%</td>
<td>228.6 ± 5.9</td>
</tr>
</tbody>
</table>

داده‌ها به صورت میانگین و انحراف استاندارد (M±SD) (است).

جدول ۴ میانگین و انحراف استاندارد وزن عضله دوقلو گروه‌ها

<table>
<thead>
<tr>
<th>گروه</th>
<th>وزن نهایی (کرم)</th>
<th>وزن اولیه (کرم)</th>
<th>گرایش</th>
<th>کنترل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.65%</td>
<td>1.83 ± 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.48 ± 0.1</td>
<td></td>
</tr>
</tbody>
</table>

داده‌ها به صورت میانگین و انحراف استاندارد (M±SD) (است).

در مطالعه گروه‌های صحرایی گروه در مقایسه با موش‌های صحرایی گروه کنترل HIIT افزایش معاداری داشت (p=0.016). میزان تغییرات بیان در گروه تمرین بیش از ۶ گروه افزایش داشت (شکل ۱).
تغییرات بیانی بر افزایش چشمگیر IGF-I به نظر می‌رسد اجرای هشت هفته تمرين‌ی HITT، تحريك لازم را برای تولید IGF-I عضله دوقلو ایجاد می‌کند. لازم به ذکر است در پژوهش پروپژیوئیک مکانیسم‌های افزایش IGF-I سرم آزمون‌های گردشی وریه این تغییرات حاصل است که می‌تواند به صورت دو بخش در تولید IGF-I را مشخص کند (10).

به نظر می‌رسد اجرای هفت هفته تمرين‌ی HITT، تحريك لازم را برای تولید IGF-I عضله دوقلو ایجاد می‌کند. لازم به ذکر است در پژوهش پروپژیوئیک مکانیسم‌های افزایش IGF-I سرم آزمون‌های گردشی وریه این تغییرات حاصل است که می‌تواند به صورت دو بخش در تولید IGF-I را مشخص کند (10). گفتگوی افزایش چشمگیر IGF-I به نظر می‌رسد اجرای هفت هفته تمرين‌ی HITT، تحريك لازم را برای تولید IGF-I عضله دوقلو ایجاد می‌کند. لازم به ذکر است در پژوهش پروپژیوئیک مکانیسم‌های افزایش IGF-I سرم آزمون‌های گردشی وریه این تغییرات حاصل است که می‌تواند به صورت دو بخش در تولید IGF-I را مشخص کند (10).

Changes of insulin-like growth factor I gene expression in gastrocnemius muscle of male Wistar rats after a period of high-intensity interval training

Hanieh Nasrollahi, Abbas Ali Gaeini, Soheil Biglari*, Alireza Ghardashi Afousi

Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, University of Tehran, Tehran, Iran.

* Corresponding author e-mail: s.biglari.physiology@gmail.com

Abstract

Background and Objective: Studies have shown that insulin-like growth factor (IGF-I) is the main factor of growth and hypertrophy of muscle fibers. However, the effect of high-intensity interval training (HIIT) on IGF-I has not been well studied. The purpose of the present study was to investigate the changes of IGF-I gene expression in gastrocnemius muscle of male Wistar rats after a period of high-intensity interval training.

Materials and Methods: In this research study, 16 male Wistar rats (mean weight: 225±25 g) were randomly assigned into two groups: training (n=8) and control (n=8). After a week of familiarizing with training protocol, HIIT program was done 40 minutes each session, three sessions in a week for eight weeks. Then, 48 hours after the last training session, gastrocnemius muscle was extracted and the expression of IGF-I gene was determined by Real time-PCR technique. For statistical data analysis, independent t-test was used.

Results: Statistical analysis showed that the value of gastrocnemius muscle IGF-I in the experimental group compared with the control group increased by more than 6 times (638%) (P=0.016). Gastrocnemius muscle weight was significantly increased in the exercise group compared with the control group (P=0.012).

Conclusion: HIIT exercise led to a marked increase in rats’ IGF-I gene expression and gastrocnemius muscle weight.

Keywords: HIIT, Hypertrophy, Gene expression, Real time-PCR, IGF-I