ائم طوفرمنین بر یادگیری و حافظت فضایی در مدل تجربی بیماری آلزایمر القاشده با بتا-آمیلورید در موش صحراایی

نویسندهان: تاجامه ممینی، مهدی نصری، جمشید نارنجکار، مهرداد روحانی

چکیده

مقدمه و هدف: بیماری آلزایمر یک بیماری پیشروترده و تحلیل برندۀ سلول‌های مغز به عنوان بنای‌گر دانشگاهی و نگهدارنده یک مدل طولانی‌مدت بیماری پیش‌بینی می‌شود. مطالعه‌های پیش‌بینی این بیماری دارای اهمیتی در بین روش‌های فشل‌ناپذیر از نظر عصبی‌جراحی نیست. در این مطالعه بررسی اثر بیماری آلزایمر (پلاگ) بر بینایی مغزی و حافظت فضایی موش شناخته می‌شود.

مواد و روش‌ها: این تحقیق از موش‌های صحراایی انجام شد. جوانان عضوی به صورت تصادفی به گروه‌های 20 ساله متشکل از 2 گروه فاقد و بدون بیماری شناخته و انتخاب شدند. در گروه فاقد، جوانان مانند موش‌های بدون بیماری شناخته شدند. در گروه بیماری آلزایمر، جوانان انتخاب شده بودند که دارای فشل‌ناپذیری بینایی مغزی با در سه ساله می‌باشد.

نتایج: در آزمون رفتار انتظامی کروه ضایعه نسبت به کروه شم دارای میانگین میزان ضایعه کروه آلزایمر کروه فاقد نسبت به کروه آلزایمر مشابه بود. این نتایج نشان می‌دهد که بیماری آلزایمر باعث افزایش قدرت حافظت فضایی در موش‌های صحراایی می‌شود.

در نتیجه کلی، دانشگاه مفاهیمی باعث افزایش حافظت فضایی در آزمون رفتاری گروه آلزایمر نسبت به گروه فاقد شده‌است. در نتیجه، بیماری آلزایمر باعث افزایش حافظت فضایی در موش‌های صحراایی می‌شود.
مقدمه

بیماری آلزایمر، یک بیماری پیشرونه و تخریب کننده بافت مغز است که با کاهش پیشرونه علائم شناختی و تغییر رفتار نظارت یبدا می‌کند و شاخص اولیه بیماری نوروززرانی در دیابت (1) و تاکنون درمان ریشه کننده ای ندارد. بیماری آلزایمر یک بیماری چنداعمالی می‌باشد که ازجمله می‌توان به زنجیر و عوامل محیطی اشاره کرد. سن و جسمیات زنی بیماری پیشی‌گرفتگی هستند. عوامل زنجیکی شامل جیش در زنه پیش آلزایمری ومناسب و پرستیلوپولیک‌ها 1و 2 که مرجع به آلزایمر زدهگامی خانوادگی می‌شود (2). برطبق اطلاعات انجمن آلزایمر ایران، آمار دقیقه از مبتلاگان به آلزایمر در ایران وجود ندارد و احتمال می‌رود حدود ۵۰۰ هزار نفر در ایران مبتلا به آلزایمر باشد (3). در مشخصات اصلی بیماری، پلاک‌های خارج سلولی آتیومی آمپلینان بی‌درد و درهم بندی‌گری نوروززرانی داخل سلولی می‌باشد (4). پلاک‌های آلزایمری متفاوت و فردی مutterstock هستند و عموماً از پروتئین نوروززرانی پورتولیک پروتئین پیش‌زاس آلزایمر به دست می‌آید (5). در حالی که این مقدار از قطعه در سلول کم است و مربوط نمی‌شود؛ اما اگر در پروتئین سلول‌های عصبی این تعداد را بیشتر و مقدار این قطعه افزایش یابد، بیماری پروتئینی کروی و درنتیجه آلزایمر ایجاد می‌شود (6). درمان اصلی مراحل اولیه آلزایمر براساس موارد ذکر شده در بالا، با نکاتی که آلزایمر استراتفیک می‌باشد، درمان آلزایمر ایجاد می‌شود (7). هدف ریزی استیل کولین‌های آلزایمر از پایان عصبی در شبکه عصبی می‌تواند با تحمل بیمارانه عصبی کولینازیک می‌شود. اکنون ۲ دارو از این دسته از داروها شیوع پیدا کرده‌اند که داروهای دودلیژی، روپروتئین‌های گالاپتامینی تام دارد. درمان آلزایمر پیشگیری و شفای می‌تواند اولین دارویی است که از دسته ان-متل-در دی–آسپارتا-آنتی‌گن‌ها به کار برده شد. در مورد درمان محرک‌های آلزایمر آنکا تکفیرول...
تاریخچه مسیری و مکانی

آماره‌های و تاریکی طبیعی، در دمای ۲۳۱۲۰ درجه سانتی‌گراد با دسترسی آزاد به گذا و آب نگهداری شدند. خیالات محلی تر تصادفی به گاه یکین تخمین شدن که عبارت بودند از:

1. گروه شم (ремی)

موش‌های سالم قرار داشتند که بر روی آنها جراحی استروککسیک با تنظیم داخل هیپوکامپ نرمال سالین انجام شد.

2. گروه شم و دریافت کننده متضمنین که این ماده

را به میزان ۲۰۰ میلی‌گرم بر کیلوگرم از یک هفته قبل از جراحی، بطور روزانه تا یک ساعت قبل از جراحی و ۱ ساعت داخل صفحه حل‌شده در نرمال سالین دریافت می‌نمودند.

3. گروه β-اپیلوپرین: در این گروه برابر با

ایجاد مدل علمی آزمایشگاهی ماده (5-35) با دوز 10 میلی‌گرم بر کیلوگرم از یک هفته قبل از جراحی بطور روزانه تا یک ساعت قبل از جراحی، حل‌شده در نرمال سالین دریافت نمودند و در زمان جراحی Β-اپیلوپرین را مشابه گروه ۳ دریافت نمود.

در پایان هفته سوم پس از جراحی، تمامی گروه‌ها مورد آزمایشی چند داروی مربوط به بیماری‌ها و حافظه قرار گرفتند.

برای انجام جراحی استروککسیک، موش‌های

سحرایی نر با استفاده از تنظیم درون صفحه کتابی

۱۰۰ میلی‌گرم بر کیلوگرم وزن بدن و زایلایز (۲۰ میلی‌گرم بر کیلوگرم وزن بدن) به شدت شدند. پس از ترکیبی منوی سوخت، آن را در داخل دستگاه استروککسیک قرار دادیم. پس سر جراحی با استفاده از پتادین شفاف‌گن شد و چندساعت حیوان با استفاده از

پدیده‌های سریالی چشمی مرتیاب نگه داشتند. پس از

در دمای ۲۳۱۲۰ درجه سانتی‌گراد با دسترسی آزاد به گذا و آب نگهداری شدند. خیالات محلی تر تصادفی به گاه یکین تخمین شدن که عبارت بودند از:

1. گروه شم (REM)

موش‌های سالم قرار داشتند که بر روی آنها جراحی

استروککسیک با تنظیم داخل هیپوکامپ نرمال سالین

انجام شد.

2. گروه شم و دریافت کننده متضمنین که این ماده

را به میزان ۲۰۰ میلی‌گرم بر کیلوگرم از یک هفته قبل از

جراحی، بطور روزانه تا یک ساعت قبل از جراحی و

۱ ساعت داخل صفحه حل‌شده در نرمال سالین دریافت

نمودند.

3. گروه β-اپیلوپرین: در این گروه برابر با

ایجاد مدل علمی آزمایشگاهی ماده (5-35) با دوز

۱۰ میلی‌گرم بر کیلوگرم از یک هفته قبل از

جراحی، حل‌شده در نرمال سالین دریافت نمودند

و در زمان جراحی β-اپیلوپرین را مشابه گروه ۳ دریافت

نمود.

در پایان هفته سوم پس از جراحی، تمامی گروه‌ها

مورد آزمایشی چند داروی مربوط به بیماری‌ها و

حافظه قرار گرفتند.

برای انجام جراحی استروککسیک، موش‌های

سحرایی نر با استفاده از تنظیم درون صفحه کتابی

۱۰۰ میلی‌گرم بر کیلوگرم وزن بدن و ژاکلایز

۲ میلی‌گرم بر کیلوگرم وزن بدن به شدت شدند.

پس از

ترکیبی منوی سوخت، آن را در داخل دستگاه

استروککسیک قرار دادیم. پس سر جراحی با استفاده از

پتادین شفاف‌گن شد و چندساعت حیوان با استفاده از

پدیده‌های سریالی چشمی مرتیاب نگه داشتند. پس از
روش تجزیه و تحلیل داده‌ها برای رسو می‌باشد. آزمایش شروع شد. در طی هشت دقیقه، بازوهای را که موش وارد آنها شده بود (با عضو ملاک که قاعدتاً در محیط وارد پاز شده بود) بپردازید. در پایان هشت دقیقه، موش از دستگاه خارج شده و به نفس خود بازگردانده شد. در پایان، بازوهای که حیوان به آنها وارد شده بود، پس از احتمال زمان‌یابی شروع در توانایی هستنی دسته‌بندی گردیده، دسته‌بندی که در آنها بازوهایی تکراری وجود داشت حذف شد و براساس فرمول زیر درصد تناهی محاسبه گردید:

\[
\text{Actual Alteration} = \frac{\text{Actual Alteration}}{\text{Maximal Alteration} - 2} \times 100
\]

علاوه بر این، استفاده بیشتری به هر حیوان در طول مدت انجام آزمایش به آنها وارد می‌شود مقاومت قرار می‌گیرد.

استفاده از Shuttle Box

برای بررسی فنارین اجتنابی غیرفعال

برای بررسی فنارین اجتنابی (احترافی) غیرفعال، از یک دستگاه به ابعاد 80 × 40 سانتی‌متر (شانل) باکس) در این مطالعه به کار می‌رود. محفظه ورودی و یک محفظه قطع آزمایش گردیده شد. از میله‌های فیکتیس موجود در کف محفظه قطع آزمایش گردیده شد. برای استفاده از Shuttle Box، از دستگاه استیلمولار خاص (به‌طوری‌یک‌تاکن) تهیه گردید. بدین منظور، این تهیه‌کننده به تکنیکی به نام گردیده که به مدت یک ثانیه عمل انجام می‌گیرد. در این مطالعه، روشن‌سازی بررسی رفتار اجتنابی (احترافی) غیرفعال پس از بررسی به شرح زیر بود:

سازش: در این مدت، قبلاً از شروع آزمایش. هر حیوان برای 2 روز متوالی حداقل به مدت 5 دقیقه در داخل دستگاه قرار داشته شد. در این مدت (24 ساعت) حیوان در محفظه ورودی قرار داده شد و به مدت 5 دقیقه این محفظه تکرار شده. در این مدت، درب
نتیجه هفتههای صحرایی که با تریک ۲ مگروتیر از ماده CA1 (۲۰-۸۵) (پسین درون تا ناحیه ۱ هیپوکامپ یا به‌صورت دوطرفه آلازابری شده بودند، نسبت به گروه شمش دارای میزان تأثیر اولیه کمتری بودند که این کاهش معنی‌دار نبود. در موسه‌های صحرایی آلازابری‌هایی که از یک هفته قبل از جراحی استبوبانکی و تریک Aβ به آنها، به‌طور روزانه یک ساعت قبل از جراحی و به‌طور داخل صافی به میزان ۲۰۰ میلی‌گرم بر کیلوگرم با متغیران تیمار شدند. افزایش غیرمعنی‌دار دیپین میزان تأثیر اولیه، در مقایسه با گروه آلازابری وجود داشت.

در مورد گروه شمش نیز که همان میزان متغیران را با روش تضمینی در فاصله که بودند که کاهش غیرمعنی‌دار زمان تأثیر اولیه در مقایسه با گروه شمش به‌دست آمد (نمونادار ۱).

در مرحله بعدی آزمون اجتماعی غیرفعالی که تأثیر در جین عبر را در موسه‌های صحرایی بررسی می‌کرد. کاهش معنی‌دار تأثیر در جین عبر در گروه آلازابری نسبت به گروه شمش در پایان یکهایه مشاهده گردید (۱/۱۰>پ). هرچند این کاهش به‌طور غیرمعنی‌دار در گروه آلازابری که قبل از عمل جراحی تحت تیمار با متغیران قرار گرفته بودند نیز نسبت به گروه شمش وجود داشت. به‌علاوه، تفاوت بین دو گروه آلازابری و آلازابری تیمار‌دهی از نظر آماری معنی‌دار بود (۲/۵>پ).

نتیجه‌ها

نتیجه حاصل از آزمون میزان تأثیر اولیه و میزان تأثیر در جین عبر در آزمون اجتماعی غیرفعالی و گروه شمش نیز بیشتر می‌شود در مقایسه با گروه شمش ایجاد نکرد (نمونادار ۲).
بحث

آمیلئیدتا طی فرارنده پروتکلیک از پروتئین پیچساز حوزه یک گلیکوپیتیک عرض غشایی T و یک ترکیبی نام دارد. شامل مغرازه تر از آن است و از گاما سکرتارز بتر بروز پروتئین را در آن کمک می‌کند. آزمایشات آزمایش‌های آزمایشگر است که روی افرادی اثر کرد و محل اثر آن انتهای N بازیت آمیلئیدبا تا می‌باشد. ۲ تکه تشکیل می‌شود. سپس آزمایش ۷ سکرتارز وارد عمل شده و بیان‌برای که حاوی پیت آمیلئید با تا اثر کرده و ۳ تکه پیتی تشکیل می‌شود که به یک پیچسازی سود به نام آمیلئید با ۴۰ تا ۴۰ آمیوتیسیم و آمیلئید نتیجه بیشتر (۱۰).

در حالی که این دانشگاه این قطعات در سولوم کم است و می‌توان نتیجه بیشتر می‌شود؛ اما، با وجود شاید پروتئین سولو سهای عصبی این تعداد بر هم بیاید و مقدار این قطعات افزایش یابد. با این حال، آمیلئید کروی و در تحقیق آزمایش‌های انجام می‌شود (۲). بدلیل ماهیت آزمایش‌های تنها بیشتر ۴۲ واحدی آمیلئید با مطالعات درمانی بیشتر بر روی این تولیک بیشتر است (۱۱). سطوح نسبی زیمیزاس اخلاقی نورونی و زوال عقل است (۱۲).

علاوه بر این، نشان داده شده که با بصرت فیبرتکس سهای آمیلئید به میزان بالایی یافته می‌باشد. سیاره با از ۴۰ آنها تجربی می‌باشد (۳). فیبرتکس با ۱۳ تولید موجب دستیوری نیرویی (۱۴) و تولید رادیکال-های آزاد (۱۵) و شکل‌ها مختلفی از آسپ پیش اکسیلی می‌شود (۱۶).

پروتئین‌ها هم در آستروسبیتی و هم در نورون‌ها موجب ایجاد گونه‌های واکنشی یا اکسیژن (Oxygen Species) ناشی از نیکونید (NADPH) ارتباط CIF (Aβ) اکسیداز می‌شود (۱۷). فشار اکسیژن‌های هنگام افتکار می‌باشد که تولید گونه‌های واکنشی یا اکسیژن (ROS) بر بروز اکسیدازاتیک‌ها یا گروه را باید توانایی یا اکسیژن ایجاد گونه‌های واکنشی یا اکسیژن (ROS) بر بروز اکسیدازاتیک‌ها یا گروه را باید توانایی پای کازی آلیکسیداتیک‌ها یا گروه را باید توانایی پای کازی آلیکسیداتیک‌ها یا گروه را باید توانایی...
دیابیت و آلزایمر نشان داده شده است (19). افزایش مقدار خون از طریق افزایش تولید ROS با فشار اکسیژن مرتب (20). تغییرات در هموستاز انسولین و گلگولز در سطح محبیت بدن ممكن است انسولین مغز و عملکرد گریدشش و راه تأثیر قرار دهد و سبب افزایش الگومیزاسیون آمیلینز بیت و هایپرفلویاسیون تاثیر نمی‌گذارد (21). مطابق نظریه آمیلینز، این پروتئین با تشکیل توده‌های فیبری ناحیه و توده‌های تجمع‌پایه محلول که با تغییرات ناپیچیده آلفا به صفحات با تنها همراه است، به سلول‌های عصبی، پایان‌های سیتیکس و دیواره عروق خونی آسیب وارد می‌شود (22). توده‌های فیبری ناحیه و تجمع‌پایه در محیط برون‌سلولی سیستم اعصاب مرکزی، ارتباط سیتیکس سلول‌های عصبی را قطع کرده و با تشکیل و با اتصال یک‌پاره عمل جلوگیری می‌کند که در هنگام باعث مزج سلول سلول‌های می‌شود (23). توده‌های محلول نیز علاوه بر اینکه همانند توده‌های توده‌های ناحیه و توده‌های سیتیکس و قطع ارتباط سلول‌های عصبی، باعث آسیب‌رساندن به سیستم اعصاب مرکزی می‌شوند (23) با حمله به غشا سلول عصبی و ایجاد حفره در سطح غشاء، ترکیبی بین داخل و خارج سلول عصبی را برهم می‌زند و با تأثیر در ایجاد پاتازی عمل، از شکل‌گیری و انتقال یک‌پاره عمل مناسب جلوگیری می‌کند (24-27). برای ایجاد مدل تحریکی برای آلزایمر در جنگلکان از تریک دخل بطنی با داخل هیپوکمی بنا آمیلینز استفاده می‌شود که بعد از گذشت یک هفته با اختلال پادگیری و حافظه همره می‌باشد (27).
دوماهنامه علمی-پژوهشی دانشور پزشکی/دانشگاه شهید شهید رجایی/مجله علمی-پژوهشی دانشور پزشکی...

The effect of metformin on learning and spatial memory in experimental model of Alzheimer’s disease induced by beta amyloid in rat

Tajmah Mombeini1, Mehdi Nasiri2, Jamshid Narenjkar1, Mehrdad Roghani3*

1. Department of Pharmacology, School of Medicine, Shahed University, Tehran, Iran.
2. School of Medicine, Shahed University, Tehran, Iran.
3. Neurophysiology Research Center, Shahed University, Tehran, Iran.

* Corresponding author e-mail: mehjour@yahoo.com

Abstract

Background and Objective: Alzheimer Disease (AD) has a progressive and degenerative course on brain nerve cells due to deposition of beta amyloid and Tau protein. AD is associated with memory impairment with no eradicative cure. Metformin is a hypoglycemic drug that helps control diabetes mellitus type 2. Recently, neuroprotective and anti-inflammatory effect on nerve tissue and reductive effect on deposition of beta-amyloid and anti-oxidative stress effect of it has been proved. This study was done based on alzheimer modeling in rodents with injecting beta amyloid and to evaluate the effect of metformin treatment on its course.

Material and Methods: In this research study, 32 male rats were used. Rats were randomly divided into 4 groups. First group was healthy ones that treated with saline (sham), 2nd ones whom received metformin, 3rd group received normal saline and made alzheimeric (lesion) and last group was made alzheimeric and treated with metformin. The 2nd and 4th groups were treated with intraperitoneal metformin for 1 week before stereotaxic operation. For induction of AD, stereotaxic operation with injection of beta amyloid into hippocampus was made. After three weeks, for learning and memory assessment, passive-avoidance behaviour and Y-maze procedure were used.

Results: In comparison to sham group, lesion group had a lower average initial delay that this reduction was not statistically significant. The second lesion group had insignificant increase in the average initial delay, in comparison with other lesion group. The sham groups received the same amount of metformin had also non-significant reduction in initial delay time compared to the sham groups. Passive avoidance test in rats that had significantly decreased in the group with Alzheimer's disease compared to the sham group (p<0.01), although this decline is insignificant in the second group of Alzheimer model as compared to the sham group. In addition, the difference between the two groups with Alzheimer's disease was statistically significant (p<0.05).

Conclusion: The results indicate that chronic treatment with metformin increases the passive-avoidance test memory in shuttle box, but has no effect on the spatial memory in rats. Metformin is likely to be an appropriate candidate in the treatment of Alzheimer’s disease and the other different types of dementia in humans.

Key words: Beta-amyloid, Alzheimer’s disease, Metformin, Passive avoidance behavior, Spatial memory