اثر تمرین اختیاری بر سطح CDNFD در قشر مغز موسه‌های مدل تجریبی پارکینسونی قاً شده با ۶-هیدروکسی دوپامین

نویسندگان: حسین شیروانتی، وَحید سبحانی، جهلیل اصلانی

چکیده
مقدمه و هدف: مطالعات اخیر نشان می‌دهند که تمرین‌های اختیاری باعث افزایش سطح CDNFD در قشر مغز موسه‌های مدل تجریبی پارکینسونی می‌شود.

مواد و روش‌ها: در این مطالعه تجربی ۳۰ سر موسه صحرا بانی در آزمون اختیاری ۶-OHDA می‌پوشند. سالم تمرین سالم کنترل پارکینسونی در کروماتوگرافی دندانه و سپس پارکینسونی شد (تمرین-).

نتیجه‌گیری: نتیجه‌گیری این پژوهش نشان داد که تمرین‌های اختیاری باعث افزایش سطح CDNFD در قشر مغز موسه‌های مدل تجریبی پارکینسونی می‌شود.

واژه‌کلیدی: تمرین اختیاری، ۶-هیدروکسی دوپامین، CDNFD.
اثر تمرین اختیاری بر سطح CDNF در قشر مغز موس های مدل تجریبی

مقدمه

بیماری پارکینسون، شاخص ترین اختلال نوروباتونزیک است که در نتیجه دزتراسون نورونهای دوپامینزیک بخش مراکم جسم سیاه مغز و پایانهای آن در استراتفیم به وجود می‌آید. بیماری پارکینسون به سبب اختلال در مراکم کنتل بدن باعث وجود امد لنزه در حال استراحت، برادر کیتی، سخت‌شکلی عضله و عدم تعلید وضعیت می‌شود (2). علل از قبل ادارکایانیو افرازی برکپیاکسیون لیپیدی، کاوش سطح گلوکائیت، تخرب DNA و تجمع آن از مهم ترین علل دزتراسون نورونهای دوپامینزیکی است. ادارکایانیو ناهندا نورونهای دوپامینزیکی را تخرب می‌کند. ب phố آب‌ادو اخذ‌داری، در فرآیند سفری‌پلاسی ادارکایانیو کاهش تولید اترژی، منجر به مرگ سلوله می‌شود (4).

تصویر می‌شود که ادارکایانیو به‌دلیل نئک‌کسیل رادیکال‌های آزاد، نقش اساسی در نوروباتونزی این بیماری دارد (3). تزریق داخل استراتفیم 6- هیدروفی 6-OHDA، پرده‌زیان مشخص در عصب‌های مسیتی و موجب ناشی از سطح برای می‌شود (5). نوروباتونزیک 6-OHDA تولید انگیزکی آزاد که تریپکی سیتوکین هستند، سبب مختل‌نمودی هیستوژنی کلسیم از طریق آنزیم و رودی تشدید آزاده‌نشدن از ذخایر داخل سلولی (7) اثر بر عملیات تنظیم زنبوری و منجر به 6-OHDA (8) شده و موجب مرگ نورونی می‌شود.

فاکتورهای نوروباتونزیک (NTFs) پرده‌زیان به‌عنوان یک بیماری که به‌طور کامل مفصل، عاملی قابل تغییر در طی این الگویی و اثری بروز شده و موجب تارک‌نامه‌های آزمایش‌گاهی در کیفیت 6-OHDA و در ویژگی‌های تغییری این بیماری می‌شود.

1. Brady Keynesian
2. Muscle hardening
3. 6-Hydroxydopamine (6-OHDA)
4. Cerebral dopamine neurotrophic factor
حسين شیروژی و همکاران
نیز به صورت آزاد و از طریق بی‌طرف‌ها ویژه در دسترس قرار داده شد.

برنامه ترمیمی

حیوات پس از انتقال به محیط آزمایشگاه و آشتابی با محیط جدید و نحوه فعالیت روزی چرخ گردان بطور تصادفی به چهار گرو: کنترل سالم (9 سر)، تمرین سالم (6 سر)، کنترل پارکینسونی (9 سر)، گروهی که ابتدا تمرین داشتند و سپس پارکینسونی شدند (6 سر) تقسیم شدند. گروه‌های تمرینی، به دست هفته در فنخصوصی که می‌توان به چرخ دوبار برد. قرار گرفتند. این دستگاه موجود به کارتری باشد که میزان مصرف طی شده توسط هر آزمونی را بی‌نظیر گردید.

جرایح استرتوانکی

برای انجام عمل جراحی استرتوانکی از موش‌های با رنگ و وزنی ۲۵۰-۳۰۰ گرم انتخاب شد. تخریب شریک مغز موش‌ها و تزریق محلول ۲-هیدروکسید دوایمن (۶) با ساخت شرکت سیگما آدلیری به صورت OHDA استرتوانکی به‌داخل بطن مغز صورت گرفت. با استفاده از آطلس واتسون و پاکتون، مکان مناسب برای انجام عمل استرتوانکی با مختصات قدامی-خلفی (۵/۰، جانه (۱) و شکم (۱/۰) مشخص شد (۲۰۰). غلظت تزریق ۲۰۰ میکروگرم و حجم تزریق ۱/۵۵۱ میلیلیتر با مغز موش استفاده شد (۲۱). برای عمل جراحی کنال ۷۷ گی مناسب شد و بدن گرفت.

سپس از هر گروه دوایمن با سالیان به مدت ۳۰ ثانیه برای هر میکروالتر تزریق شد. پس از یک ثانیه از فنر ۸ میلیتری برای جلوگیری از خروج مایع از تونل استفاده شد و موش به مدت ۱ دقیقه ثابت نگه‌داشته شد. برای بررسی اثر تزریق (۶) (OHDA) و تأیید این موضوع با تزریق ۲-هیدروکسید دوایمن موش‌ها پارکینسونی می‌شود، از نست خرچنگ با فاصله ۲۴ و ۷۲ ساعت استفاده شد. در این آزمون، موش از ناحیه دم بالا نگهداری می‌شد و در صورت نیاز تعادل را حفظ کرد. نشانه پارکینسونی شدن موش‌ها تلفی می‌گردید (۲۲).

عصبی را بعد از آسو غلیظ، اسپانتر می‌کند. هرچند در ارتباط با تأثیر تمرین و روش بر فعالیت‌های آنزیم‌های ضدادکشی اطلاعات ضدونظیر وجود دارد، اما به‌نظر می‌رسد که روش‌ها با این‌دسته موارد ترشی و اکسیداسیون ایجاد کنند. به‌طوریکه فکری برای استرس کامپلکسی را افزایش داده و به‌طور استرس آگاهی را تسریع می‌نماید (۱۸). تمرین ورزشی، زندگی‌مانند سروال‌های عصبی را افزایش می‌دهد و برقراری عملکرد آنزیمی را بعد از آسبی تسهیل می‌کند (۲۱).

CDNF

تاکون در ارتباط با روش و نیازهای مطلوب مطالعه مشاهده نشد. است. در تحقیقات مطالعه که درخوشهای CDNF اثر حفاظی CDNF بر موش‌های پارکینسونی شده‌بود. ۶- هیدروکسید دوایمن ایجاد بررسی برای درمان و درمان‌پذیری CDNF در پاتوژنیزیکا را حفظ کرده و همچنین از نکاتی این نمونه جلوگیری کند (۱۱). بنابراین کاملاً واضح است که در این زمینه اهمیت وجود دارد. در تحقیق، هدف از تحقیق حاضر برای ایجاد ۱۲ هفته تمرین اختیاری به سطح تأثیر حفاظی ۲۱ هفته تمرین اختیاری بر سطح قشر مغز موش‌های صحراپلاستی در معرض یکپارچه تزریق ۶- فشر مشخص بود.

روش تحقیق

جراحات

در پژوهش حاضر، ۳۰ موش صحراپلاستی نر بالغ نژاد بستر (دوره‌نامهای) از مرکز استینو پاسور آمل تهیه شد. حیوانات پس از انتقال به محیط آزمایشگاه، به‌مدت یکهفته (فقط اول) جهت تطبیق با محیط جدید به‌صورت گروه‌های ۴ موش در فندق‌های پلی‌کورنتن نشان در محیط با مدت ۳۴۰۰ دهه در دو شرایط ۷۵۰ و ۱۲ ساعت مورد شناسایی و در شرایط ۱۲ ساعت روشنایی و ۱۲ ساعت تاریکی نگهداری شدند. در طی دوره پژوهش نیز حیوانات به دو گروه مختلف شد که در پب (بلت) دسترسی آزاد داشتند. ضمناً آب موردی با حیوان
اثر تمرین اختیاری بر سطح CDNF در فشل مغز موسه‌های مدل تجربی

بافت‌پذیری
اکنون مشاهده شده است که تمرین‌های اختیاری می‌تواند در کاهش سنگینی‌های مغز منجر شود. به یکی از مهم‌ترین نتایج این مطالعه، اینکه تمرین‌های اختیاری در کاهش سنگینی‌های مغز موسه‌های CDNF می‌تواند نقش مهمی داشته باشد، گزارش شده است. این نتایج به‌عنوان نشان‌دهنده ای از اهمیت تمرین‌های اختیاری برای کاهش سنگینی‌های مغز محسوس می‌شود.

نمونه‌های گروه‌های تیمار
نمونه‌های گروه‌های تیمار به‌طور میانگین ± انحراف معیار (انحراف میانگین) در سطح CDNF گروه‌ها به‌صورت زیر بودند:

<table>
<thead>
<tr>
<th>گروه‌ها</th>
<th>CDNF (میانگین ± انحراف معیار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کنترل سالم (n=9)</td>
<td>4/10 ± 0/99</td>
</tr>
<tr>
<td>کنترل پارکینسون (n=9)</td>
<td>3/78 ± 0/30</td>
</tr>
<tr>
<td>تمرین (n=12)</td>
<td>4/42 ± 0/72</td>
</tr>
<tr>
<td>تمرین تیمار (n=12)</td>
<td>4/72 ± 0/4</td>
</tr>
</tbody>
</table>

نتایج نشان داد که تمرین‌های اختیاری بین گروه‌های مختلف منجر به کاهش سطح CDNF می‌شود. این نتایج با نتایج دیگر تحقیقات یکسان است.

تأثیرات اضافی
تأثیرات اضافی بر روی عوامل مختلف می‌تواند نقش مهمی داشته باشد. این نتایج به‌عنوان نشان‌دهنده ای از اهمیت تمرین‌های اختیاری برای کاهش سنگینی‌های مغز محسوس می‌شود.

۴۰
بحث و نتیجه‌گیری

هدف از پژوهش حاضر، بررسی اثر حفاظتی ۱۲ هفته تمرين اختصاصی بر سطح CDNF در امراض سلول‌های پارکینسونی ۶-OHDA بود. یکبار تزریق کمترین مقدار ۶-OHDA (۱۰۰۰ PMNI) یا مقدار بالاتری ۶-OHDA (۱۰۰۰ PMNI) به مدت ۴ هفته کمترین مقدار CDNF در امراض سلول‌های پارکینسونی گروه‌های تمرين امواج افتاده. همانطورکه مطالعات پيشین نشان داده‌اند، ۶-OHDA اثر سبب عصب دارد که آثار خود را از طریق تحریک سلول‌های دوبامیتازیک جسم‌سازی اعمال می‌کند (۹). مهمترین یافته تحقیق کنونی، افزایش غلظت CDNF در گروه تمرين اختباری بود. این نتایج اینکه است که تاثیرات تحریک سلول‌های می‌تواند در موش‌های مدل پارکینسون عملکرد تحریک سلول‌های دوبامیتازیک و بازیابی نماید. می توان آن را یک پروتئن درمانی بالقوه، یا به عبارتی پایه برای تغییر موش‌های مدل پارکینسون در گریف. مطالعات نشان داده‌اند که ۶-OHDA اثر مستقیم یا غیرمستقیم را در طول از طریق مهار کمپلکس ۱ افداکتیبلیت و افراش‌گیری گونه‌های اکسیژن فعال، الکا می‌کند (۴۲): اما مرگ سلول‌های آپوپتوزی و بهبود از نیز موجب می‌شود (۲۵). می تواند مسر که علائم دهه را نمایند که با برخی از این پدیده‌ها اتفاق می‌کند. گزارش‌ها نشان مدهد که حداقل بخشی از اثرات حفاظت عصبی برعلیه CDNF سبب ناشی از ۶-OHDA مربوط به مهار استرس شکمی‌زایی است (۱۳). است. جمعیت پروتئین‌های غیرعمولی در اثر حریق ۴ می‌تواند موتوریت می‌شود که با پاسخ غیرعمولی در اثر حریق ۴ یا آغاز می‌کند. بر عهای کمترین MDA در سیستم‌های پارکینسونی یا گروه می‌کند که به سبب مقاومت با پاسخ پارکینسونی سه‌秦国 پیش‌بینی خاص در استرس‌های سختی داخلی تحلیل حفاظتی و از پارکینسون می‌باشد. از نظر کاشفی که افراش در استرس اکسیژنی کشف کرد. استرس اکسیژنی می‌تواند یک

3. Mitochondrial complex 1
4. Endoplasmic Reticulum
5. Unfolded Protein Response

۱. substantia nigra pars compacta
۲. substantia nigra pars reticulate
عنصر اولی از درمانی خاصی گیرای (CDNF)، که بر اثر تمرین اختیاری بر سطح (77) عامل نروتروفین مسئول از افزایش گلیبال (GDNF)، یکی از اعضا خانواده نروتروفین، استرس آکبکی گردیده مارگ سلولی را در مغز نروتروفین، و آزمایشگاه کاشی داد (28). یک مطالعه اخیر نشان داد که ژنتیکی این جمجمه ترکیبی به درون جسم مختلط تولید (2007) اکسپرسیون آکبکی را در مدل پارکینسونیوم کاهش داد (29). اکثر آثار پژوهشی BDNF و NRTN و GDNF، از طریق مطالعات آکبکی (پروتئین کیتاز)، یک نشانه غرفه‌نگاری (کیتاز) که نشان می‌دهد GDNF اکسپرسیونی در مدل پارکینسونیوم کاهش داده است (31). اکسپرسیون GDNF یک مدل NRTN و کاهش MRN، به این سوال که آیا اکسپرسیون GDNF، یک نشانه اکسپرسیونی در مدل پارکینسونیوم کاهش داده است، مطالعات مفصل محققان متفاوت است. این نشان داده است که ترکیبی می‌تواند به دنبال NRTN کاهش دهد. مطالعات مفصل محققان این نشان داده است که ترکیبی می‌تواند به دنبال NRTN کاهش دهد. مطالعات مفصل محققان این نشان داده است که ترکیبی می‌تواند به دنبال NRTN کاهش دهد. مطالعات مفصل محققان این نشان داده است که ترکیبی می‌تواند به دنبال NRTN کاهش دهد. مطالعات مفصل محققان این نشان داده است که ترکیبی می‌تواند به دنبال NRTN کاهش دهد. مطالعات مفصل محققان این نشان داده است که ترکیبی می‌تواند به دنبال NRTN کاهش دهد. 

1. Insulin Growth Factor-1


Effect of voluntary exercise on cerebral dopamine neurotrophic factor (CDNF) level in the cerebral cortex of experimental model of parkinsonian rats induced by 6-hydroxydopamine

Hossein Shirvani*, Vahid Sobhani, Jalil Aslani

Exercise Physiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

*Corresponding author e-mail: shirvani.h2006@gmail.com

Abstract

Background and Objective: Daily physical activity can reduce the risk of Parkinson's disease. Therefore, the purpose of this research was to study the effect of wheel running exercise on CDNF level in cortex in an experimental model of rats exposed to 6-hydroxydopamine.

Materials and Methods: In this experimental study, 30 Wistar rats were randomly divided into four groups: healthy control, healthy exercise, Parkinsonian control, and Parkinsonian group that first exercised and then Parkinson's model was induced (Practice-treated), respectively. Subjects in exercise group were kept in special cages geared with running wheels for 12 weeks. After 12 weeks, 6-OHDA was injected into the right ventricle of the brain and five days after intraventricular injection, sampling was performed and CDNF level of cerebral cortex was measured by ELISA method. Data were analyzed statistically by ANOVA test.

Results: 6-OHDA decreased CDNF protein content in the cerebral cortex of control subjects with Parkinson's disease compared with healthy controls (p=0.017). CDNF level of Parkinson's exercise group was higher than that of Parkinsonian control group (p=0.002).

Conclusion: The findings of the present study show that pre-treatment with voluntary exercise can increase CDNF level of cerebral cortex and protect neurons versus oxidative destruction led by 6-OHDA toxicity. Therefore, voluntary exercise can be offered as a protection strategy against Parkinson's disease.

Keywords: Voluntary exercise, 6-hydroxydopamine, CDNF