بررسی اثر بر اثر بیماری‌های نانوژرات نقره کلوری‌یدی
بر سه سویه باکتریایی و سلول‌های ماکروفاز در
کشت ۴ ساعت
نویسنده‌گان: زینب شوندی، طörü غضروفی، کیومرث نظری مقدم، احمد عابدی علی

۱- دانشمرنگه‌کارشناس ارشد میکروپایژیان دانشکده علوم و عضو گروه تحقیقاتی نظیم
پاکیزه ایمنی دانشگاه شهید. تهران، ایران
۲- دانشگاه علوم پزشکی دانشگاه پرستینه و عضو گروه تحقیقاتی نظیم پاکیزه ایمنی
دانشگاه شهید. تهران، ایران
۳- دانشگاه‌های اندونزی، دانشگاه شهرکی، دانشگاه شهید. تهران، ایران
۴- دانشگاه‌های میکروپایژیان دانشگاه الزهرا. تهران، ایران

E-mail: tghanzanfari@yahoo.com

چکیده
مقدمه: و هدف: نانوژرات نقره، به عنوان نسل جدید مواد ضد دربی‌کوبی، کاربردهای فراوانی
Pseudomonas Staphylococcus aureus. Escherichia coli دارد. به باکتری کرک‌کش
از میengers باکتری‌های هستند که می‌توان آن‌ها را با مواد ضد دربی‌کوبی کنند. ساختار شده از نانوژرات نقره آن
در ماید و ورودی برای انتاسیون ماکروفازا، هستند که سرونشت نانوژریت در بنی به فعالیت
آن‌ها است. در سیستم اثرات ضد باکتریایی نانوژرات نقره کلوری‌یدی در
۴: باکتری‌خیای مختلف و هم‌زمان بررسی اثر آن بر سلول‌های ماکروفازا در کشت ۴ ساعت است.

مواد و روش‌ها: برای تعبیه غلظت موثر ضد باکتریایی نانوژرات نقره، این ماده برای سه
باکتری مورد بررسی از روش سن جنگ و برای تعیین غلظت این نانوژرات برای ماکروفازا
از MTT سنجش فعالیت حیاتی ماکروفازا به روش استفاده شد.

Esherichia coli ATCC/25922 MIC
نتایج: محلول نانوژرات برای MIC
رتبه با ۱۵/۰ ppm. برای با
Staphylococcus aureus ATCC/25923.۱/۵ppm
و برای با
Pseudomonas aeruginosa PA01
۳/۵ppm. برای با
MIC
۱/۵ppm. برای با
MIC
۸/۵ppm. برای با
MIC
۲۵/۵ppm. برای با
MIC
۴۵/۰ppm. برای با
MIC
۲/۵ppm. برای با
MIC
۴/۵ppm. برای با
MIC
۶/۵ppm. برای با
MIC
۸/۵ppm. برای با
MIC
۱۰/۵ppm. برای با
MIC
۱۲/۰ppm. برای با
MIC
۱۴/۵ppm. برای با
MIC
۱۶/۰ppm. برای با
MIC
۱۸/۵ppm. برای با
MIC
۲۰/۰ppm. برای با
MIC
۲۲/۵ppm. برای با
MIC
۲۴/۰ppm. برای با
MIC
۲۶/۵ppm. برای با
MIC
۲۸/۰ppm. برای با
MIC
۳۰/۵ppm. برای با
MIC
۳۲/۰ppm. برای با
MIC
۳۴/۵ppm. برای با
MIC
۳۶/۰ppm. برای با
MIC
۳۸/۵ppm. برای با
MIC
۴۰/۰ppm. برای با
MIC
۴۲/۵ppm. برای با
MIC
۴۴/۰ppm. برای با
MIC
۴۶/۵ppm. برای با
MIC
۴۸/۰ppm. برای با
MIC
۵۰/۵ppm. برای با
MIC
۵۲/۰ppm. برای با
MIC
۵۴/۵ppm. برای با
MIC
۵۶/۰ppm. برای با
MIC
۵۸/۵ppm. برای با
MIC
۶۰/۰ppm. برای با
MIC
۶۲/۵ppm. برای با
MIC
۶۴/۰ppm. برای با
MIC
۶۶/۵ppm. برای با
MIC
۶۸/۰ppm. برای با
MIC
۷۰/۵ppm. برای با
MIC
۷۲/۰ppm. برای با
MIC
۷۴/۵ppm. برای با
MIC
۷۶/۰ppm. برای با
MIC
۷۸/۵ppm. برای با
MIC
۸۰/۰ppm. برای با
MIC
۸۲/۵ppm. برای با
MIC
۸۴/۰ppm. برای با
MIC
۸۶/۵ppm. برای با
MIC
۸۸/۰ppm. برای با
MIC
۹۰/۵ppm. برای با
MIC
۹۲/۰ppm. برای با
MIC
مقدمه
از دیرباز، حذف میکروگانیسم‌های مضر مانند باکتری‌های همه‌سوز، Escherichia coli (مدل باکتری‌های نهضت گرم منفی)، Staphylococcus aureus (مدل باکتری‌های گرم منفی) (8)، Pseudomonas aeruginosa (باکتری‌های گرم منفی) (9) را از بین برده است. این امر به صورت بروز سرطان‌ها باعث می‌شود. در این مورد، کشف MDR phenotype باعث بهبود کننده سطح استفاده که باید مورد توجه قرار گیرد. در این مورد، این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش میزان مصرف antibiotic باعث افزایش سطح استفاده می‌شود. این امر به صورت کاهش می‌شود.
نتایج سنجش MIC
این آزمایش به روش رفتابسازی در پلت های MIC بر اساس پروتکل CLSI انجام گرفت و حداکثر غلظت موردی و حداکثر غلظت کنترلگی نانوذرات نقره کلوریدی برای باکتری های مذکور بررسی شد. تلفیق باکتری از کشت 24 ساعت به درون سالی تزریق نمود. کد عامل استاندارد 5 مک فارلنگ و سپس رشی کردن به اندازه 100 و در نهایت قرار دادن آن در چاکومهای پلت به اندازه 100 میلی لیتر محلول کلوریدی نانوذرات 4000 ppm با غلظت MIC در ناچیز 10 رشی شده و این محلول با غلظت MIC در ناچیز 4000 رشی به اندازه 100 میلی لیتر محلول کلوریدی نانوذرات (MIC) با نانوذرات نقره کلوریدی گرفته شد. غلظت مؤثر محلول (MIC) با نانوذرات نقره بر سه باکتری تعیین و این آزمایش سه بار تکرار شد.

مواد شیمیایی و وسایل
تیم مواد و کاربردهای در این آزمایش از شرکت مرک آلمان و تمامی وسایل پلاستیکی و پلت های میکروتریپ 96 خانه ای از شرکت نانک آمریکا تهیه شدند.

باکتری های استفاده شده
در این آزمایش از شرکت باکتری شامل Escherichia coli ATCC/25922 و Staphylococcus aureus ATCC/25923 که از دیافراگم Pseudomonas aeruginosaPAO1 و پژوهش های علمی صنعتی تهران گرفته شدند استفاده گردید.

شناسایی باکتری ها
قبل از شروع هر آزمون باید برای ایبتای درستی تشخیص باکتری مورد نظر آزمایشی انجام شود. در این آزمایش از آزمایش های میکروسکوپی و بیوشیمیایی شرکت آلومینیوم گرم کانال آب و حیات، حکایت، اندول احیای نیترات، تست وزیرسکوئر و تخم هیرادان های کربن استفاده شد.
Supplementary aureum ATCC25923:

- Student’s unpaired T-test Differences

P-value: 0.05/0.005

MBC

- **Escherichia coli ATCC/25922**
 - MBC: 25 ppm
- **Staphylococcus aureus ATTC/25923**
 - MBC: 20 ppm
- **Pseudomonas aeruginosa PAO1**
 - MBC: 15 ppm
- **E. coli**
 - MBC: 10 ppm
- **S. aureus**
 - MBC: 5/0 ppm
- **P. aeruginosa PAO1**
 - MBC: 4/0 ppm
- **S. aureus**
 - MBC: 2/0 ppm
- **P. aeruginosa PAO1**
 - MBC: 1/0 ppm
- **S. aureus**
 - MBC: 0.5/0 ppm

MTT

- **Escherichia coli ATCC/25922**
 - MTT: 1000 ppm
- **Staphylococcus aureus ATTC/25923**
 - MTT: 800 ppm
- **Pseudomonas aeruginosa PAO1**
 - MTT: 600 ppm
- **S. aureus**
 - MTT: 500 ppm
- **P. aeruginosa PAO1**
 - MTT: 400 ppm
- **S. aureus**
 - MTT: 300 ppm
- **P. aeruginosa PAO1**
 - MTT: 200 ppm
- **S. aureus**
 - MTT: 100 ppm
- **P. aeruginosa PAO1**
 - MTT: 50 ppm
- **S. aureus**
 - MTT: 25 ppm
- **P. aeruginosa PAO1**
 - MTT: 10 ppm
- **S. aureus**
 - MTT: 5 ppm
- **P. aeruginosa PAO1**
 - MTT: 2 ppm
- **S. aureus**
 - MTT: 1 ppm
- **P. aeruginosa PAO1**
 - MTT: 0.5 ppm

ELISA reader

- **Escherichia coli ATCC/25922**
 - ELISA: 0.5
- **Staphylococcus aureus ATTC/25923**
 - ELISA: 0.3
- **Pseudomonas aeruginosa PAO1**
 - ELISA: 0.2
- **S. aureus**
 - ELISA: 0.1
- **P. aeruginosa PAO1**
 - ELISA: 0.05

VC

- **Escherichia coli ATCC/25922**
 - VC: 0.1
- **Staphylococcus aureus ATTC/25923**
 - VC: 0.05
- **Pseudomonas aeruginosa PAO1**
 - VC: 0.02
- **S. aureus**
 - VC: 0.01
- **P. aeruginosa PAO1**
 - VC: 0.005

** hostel**

- **Escherichia coli ATCC/25922**
 - Hostel: 0.05
- **Staphylococcus aureus ATTC/25923**
 - Hostel: 0.02
- **Pseudomonas aeruginosa PAO1**
 - Hostel: 0.01
- **S. aureus**
 - Hostel: 0.005
- **P. aeruginosa PAO1**
 - Hostel: 0.001
نتایج سنگین و فعالیت جایی ماکروفازها بس از 24 ساعت تیمار با نانوذرات نقره کلوییدی در این مطالعه دیده شد که ماکروفازها بس از 24 ساعت تیمار با غلظت 25 ppm تا 1 ppm از نانوذرات نقره کاهش معناداری شامل ماکروفازها تیمارشده با غلظت 25 ppm تا 1 ppm از نانوذرات نقره نسبت به کنترل دیده شد. غلظت های کمتر از 1 ppm هیچ تفاوت معناداری با گروه کنترل نداشت (شکل ۲). همچنین در تصویر میکروسکوپ معمولی، تعداد عدودی از کریستال های فرمازان در کنترل دیده شد. با توجه به سویه هیچ گونه رشدی مشاهده نشد، پس می‌توان نتیجه گرفت، پر اب می‌تواند است. MIC

نتایج، همان‌طور که در شکل (۱) مشاهده می‌شود، Escherichia coli ATCC/25922 و Staphylococcus aureus ATTC/25923، با کمتر از 2 میکروگرم در هر سه بار تکرار اولین خانه قادر کدوت که پس از کشت، هیچ کلیه در آن رشد کرد و برای با کمتر از 100 ppm مقدار MBC شد. برای باکتری 23/7853 و پنی سایر باکتری‌ها با کمتر از 150 ppm مقدار MBC بود. لازم است این نتایج با کمتر از 50 ppm مقدار MBC بکاد. با توجه به این اتوماله قاده کدورت برای سنگین بکار رفت که در هر سه سویه هیچ گونه رشدی مشاهده نشد، پس می‌توان نتیجه گرفت، پر اب می‌تواند است. MIC

![chart](chart.png)

شکل ۲. میزان کاهش معناداری سلولی ماکروفازها بس از 24 ساعت تیمار با غلظت‌های مختلف نانوذرات نقره. کاهش معناداری در مقدار معناداری ماکروفازها تیمار شده با غلظت 25 ppm از نانوذرات نقره کلوییدی نسبت به کنترل دیده شد. غلظت های کمتر از 1 ppm هیچ تفاوت معناداری با گروه کنترل ندارند. توجه: ** پناخت معنادار است (0/00>P).**
جدول 1. مطالعه Petica درباره اثر نانوذرات نقره کلوریدی بر سه باکتری Escherichia coli, Staphylococcus aureus و Pseudomonas aeruginosa

<table>
<thead>
<tr>
<th>No. of CS sample</th>
<th>Composition and concentration of the CSs (ppm)</th>
<th>CMI (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stable composition</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>1</td>
<td>3 g/0.5% NaCl</td>
<td>31.8</td>
</tr>
<tr>
<td>2</td>
<td>3 g/0.5% NaCl</td>
<td>7.95</td>
</tr>
<tr>
<td>3</td>
<td>3 g/0.5% NaCl</td>
<td>2.94</td>
</tr>
</tbody>
</table>

بحث

پیشنهاد می‌گردد از نانوذرات نقره کلوریدی طبیعی برای درمان بیماری‌های میکروبی در میانی‌های مختلف استفاده شود. نتایج حاضر نشان داد که اثر نانوذرات نقره کلوریدی بر سه باکتری Escherichia coli, Staphylococcus aureus و Pseudomonas aeruginosa می‌تواند به بهبود شرایط بیماران کمک کند.

در مطالعه، نانوذرات نقره کلوریدی بر باکتری Escherichia coli (گرم سبز و گرم منفی) ارزیابی شد و کمترین غلظت کشش‌دهنده محلول برای باکتری Escherichia coli ATCC/25922 (MBC) برای ۱/۵۶ ppm Staphylococcus aureus ATCC/25923 و ۱/۰۵ ppm Pseudomonas aeruginosa PAO1 برابر با ۳۰۵ ppm ایجاد گردید. در مطالعات دیگری که برای تعیین اثر ضد‌بакتری نانوذرات نقره بر این سه باکتری انجام گردید، اثر ضدبکتری نانوذرات نقره به ابتدا رشته‌های ضد‌بکتری را کاهش و در استادی ۸-۹-۱۸ (۱۸) اما نانوذرات به‌کارگیری آن با نرخ ویژگی‌های نانوذرات نقره با نانوذرات بکالریفیت در مطالعه بسیار ناکافی بود. نتایج حاضر دارد که باکتری‌های Pseudomonas aeruginosa را به‌بختی نانوذرات طبیعی در میانی‌های مختلف نیاز دارند. نتایج حاضر نشان داد که اثر نانوذرات نقره کلوریدی بر باکتری‌ها و اثرات هم‌بودن آن بر ماکروفاگ‌ها و غلظت میکروب‌ها در جسم این این موارد برای ماکروفاگ‌ها مارا یاری می‌دهد. در این
بحث و قدردانی

با این وسیله از همکاری سرکار خانم فلخی در آزمایشگاه میکروبیولوژی دانشگاه الزهرا که ما را در انجام این مطالعه باری کردند، تشکر و قدردانی می‌شویم.

غلظت نانوذرات نقره در این دو با یکدیگر مقایسه گذاشته و نشان دهنده این موضوع است که هر نوع از مواد نانو با توجه به ویژگی همچون آندازه، شکل، غلظت نانوذرات بکار رفته، نوع ترکیب سورفکانت و پایداری نانوذرات و... منحصر به فرد است (۲۴) و این ویژگی نانوذرات بر خاصیت ضد بکرکی نانوذرات زخم دارد (۲۳). این موضوع در می‌توان با مقایسه این کار به مطالعات مشابه دیگر نیز دریافت (۲۰،۲۴-۲۵).

اثر این نانوذرات بر ماکروفازا به روش سنجش فعالیت حیاتی ماکروفازا سنجیده شد و حداکثر غلظت از نانوذرات نقره کلوبیتی که باعث مزگ کامل ماکروفازا پس از ۲۴ ساعت نشده است، برای یا ppm و حداکثر غلظت غورسی نانوذرات در مقایسه با گروه کنترل برای با ppm اندازه گیری شد. نتایج به دست آمده از موضوع را روشن می‌کند. اول آنکه، اثر نانوذرات نقره کلوبیتی هم با تکثیر هم بر ماکروفازا وایسته به غلظت نامی. این موضوع در بررسی‌های انجام‌گرفته سایر سولوها مانند اثر نانوذرات نقره بر سولوها فیبریلاسنت، سولوها کیدی، کراتانسیس، سولوها لوریو نیز سلول‌های بی‌پتید اسپرماتوگونی و مست سل‌ها نیز دیده شده است (۳۷-۳۹). دوم آنکه، اثر نانوذرات نقره کلوبیتی در باکتری‌های مزکور به صورت کندگی است و به MBC مهار می‌کند. با کاربر در هر سه باکتری MIC برای Pseudomonas تعيین شده برای MBC. است. سوم آنکه، در بررسی واحد Pseudomonas aeruginosa PAO1 باکتری دیگر است که این موضوع نشان‌دهنده مقاومت بودن این باکتری نسبت به دو باکتری دیگر است. این مقاومت Pseudomonas aeruginosa PAO1 ضد عفونت کندگی دیگر نیز دیده می‌شود. جهت آنکه غلظت بیش از ppm کماما برای ماکروفازا سمی است و باعث مزگ آنها می‌شود و باکتری‌گیر غلظت کمتر از ۵/۰ که برابر ماکروفازا سمی ندارد.

15- Aline Cristina Teixeira, M., Quantification and identification of Escherichia coli, Pseudomonas aeruginosa and Aeromonas hydrophila in water dairy farms. 2007.